Numerical Analysis — Computational Session

Adaptive Step-size Runge-Kutta Methods

November 26, 2025

1 Introduction

Applying a Runge-Kutta method with a constant step size can be very inefficient. But how
could we choose a different subdivision? A viable strategy is to select the step size h such that
the local error is everywhere equal to a certain tolerance “Tol” specified by the user.

Let y; be the numerical solution of the Runge-Kutta method. We construct a second
Runge-Kutta method with 71 being the numerical approximation. We estimate the local error
by using the difference 77 — y1.

2 Embedded method
Let an s-stage method of order p be given, with coefficients ¢;, a;;, and b;. We look for a an
approximation y; of order p < p that uses the same function evaluations, i.e.,

Y1 =0 + h(brks + ... + bsks),

where the k; are given by a method from the family of Runge-Kutta methods. The k; use the
same evaluations of f, but we change the weights b; to b;. To have more freedom, one often
adds a term with f(x1,y1), that we need to compute for the next time step in any case, and
look for 7 in the form

yi=yo+h (31161 + o+ bk +Zsf($17y1)> .

Example. For the Runge method, whose Butcher tableau is

= O
el

0 1

we can take the explicit Euler method as the embedded method. Indeed, we can use the same
function evaluation k1 = f(to,yo) from the Euler method into the Runge method. Then

err =y — 1 =yo+h f(to+ Lyo + bk1) — (Yo + h f(to, 0)) = hks — k).

This expression is then an approximation of the local error for the explicit Euler method.
For a general method, one must perform the Taylor expansion of k; and f(x1,y1) and
compare the result with the exact solution. Since the ¢; and the a;; are already known, one

obtains a linear system for the EZ

3 Calculation of the optimal step size h

If one applies the method with a given value h for the step size, the error estimate satisfies
(P <p)

y1 — 01 = (1 —ylto + h) + (y(to + h) — 1) = O(WPHY) + O(RPHY) ~ C - KPP (1)

The optimal h, called hgpt, is the one for which this estimate y; — 71 =~ C' - hPt1 s close to
Tol, i.e., R
Tol ~ C - K21} (2)

opt *

Eliminating C' from (1) and (2), we obtain

Tol

h t:O.g'h'ﬁ+l v =< -
” Iy = 71|

(3)

The factor 0.9 has been added to make the final algorithm “safer”. In general, we also assume
an additional restriction of the type 0.2h < hopy < 5h to avoid big changes in h.
For the norm in (3), one typically uses

~ 1 1=\
PEIENEDS (yscy . where sci = 1+ max([yio), |yi]),
i=1 v

and w0, ¥i1, and ¥;1 is the ¢th component of v, y1, and 7, respectively. This represents a mix
between relative error and absolute error.

4 Algorithm for the automatic selection of the step size

The algorithm for the automatic selection of the step size is formalized in Algorithm 1.

Algorithm 1: Algorithm for the automatic selection of the step size.

1 Input: the right-hand side f(¢,y), initial values to, yo, h, and the tolerance Tol.
2 while ¢ty < teng do

3 Using the step size h, compute yi, y1, err = |ly1 — 41|, and hopt as in (3).
4 if err < Tol then

5 to+—to+h

6 Yo < Y1

7 h <= min(hopt, tend — to)

8 else

9 h « hopt

10 end if

11 end while

5 A concrete example: the Dormand—Prince method

The Dormand-Prince method (1980) is an adaptive step-size Runge-Kutta method which
estimates the error by calculating two approximations at each step: one with 4th-order and

one with Hth-order accuracy, and the local error is estimated by taking the difference between
the 4th-order and the 5th-order solution. The step size is then adjusted to minimize the error,
making the method efficient and reliable.

The Dormand-Prince method is important because it is the default method behind the
ode45 solver for MATLAB!. The Butcher tableau for the Dormand-Prince method is the
following;:

0

1 1

5 5

3 3 9

10| 40 10

4| a4 _ 56 32

5 15 15 9

8 | 19372 25360 64448 212

9 | 6561 2187 6561 720

1| 9017 355 46732 49 _ 5103
3168 33 5247 176 18656

1| 35 0 500 125 2187 11
384 1113 192 6784 84
35 0 500 125 2187 1
384 1113 192 6784 84
5179 0 7571 393 92097 187 1
57600 16695 640 339200 2100 40

The second-to-last row provides the 5th-order solution coefficients, and the last row presents
the 4th-order coefficients for error estimation. Below, you have a friendlier text version that
you can directly copy-paste into your MATLAB implementation:

A=10,0,0,0,0,0;
1/5, 0, 0, 0, 0, O;
3/40, 9/40, 0, 0, 0, O;
44/45, -56/15, 32/9, 0, 0, O;
19372/6561, -25360/2187, 64448/6561, -212/729, 0, 0;
9017/3168, -355/33, 46732/5247, 49/176, -5103/18656, 0;
35/384, 0, 500/1113, 125/192, -2187/6784, 11/84 1;
c=1[1/5, 3/10, 4/5, 8/9, 1, 1 1°;
wl = [35/384, 0, 500/1113, 125/192, -2187/6784, 11/84 1;
w2 = [5179/57600, 0, 7571/16695, 393/640, -92097/339200, 187/2100, 1/40 1;

6 Your task

Implement the Dormand—Prince method with adaptive step-size control and apply it to nu-
merically solve the problem (called “Brusselator”, describing a chemical reaction)

y1(0) i 1.5 (@)
y2(0) =3

vy =1+ ydys — 4y
vh = 3y1 — Yiyo

with initial conditions {

on the interval [0,20]. Use a tolerance Tol = 1079 (in MATLAB, write Tol = le-6).

You may want to have a look at the MATLAB documentation here: https://www.mathworks.com/help/
matlab/ref/ode45.html

https://www.mathworks.com/help/matlab/ref/ode45.html
https://www.mathworks.com/help/matlab/ref/ode45.html

Hints:

Your code should be composed of three scripts:

1.

2.

3.

ot

One MATLAB function (you may call it RK45.m) implementing the Dormand—Prince
algorithm with the automatic step-size selection. In particular:

e For the Dormand—Prince method, use the formulas of the Runge-Kutta family,
specialized with the coefficients provided in the Butcher tableau above.

e For the automatic selection of the step size, keep as a reference Algorithm 1 above.
Another MATLAB function that implements the “Brusselator” right-hand side from (4).

One script that will serve as the main driver of your code, with the parameters h, tg,
tend, Tol, the right-hand side f(t,y) defined as a MATLAB function handle, and the
initial conditions provided in (4). In the main script, you should calculate the numerical
solutions (i.e., the two trajectories y; and y2) and plot them. Your plot should look
similar to the one in Figure 1 below.

W

Solution (y)

w
5>

[\

Figure 1: Numerical solution of the Brusselator ODE.

	1 Introduction
	2 Embedded method
	3 Calculation of the optimal step size h
	4 Algorithm for the automatic selection of the step size
	5 A concrete example: the Dormand–Prince method
	6 Your task

