
Numerical Analysis – Computational Session

Adaptive Step-size Runge–Kutta Methods

November 26, 2025

1 Introduction

Applying a Runge–Kutta method with a constant step size can be very inefficient. But how
could we choose a different subdivision? A viable strategy is to select the step size h such that
the local error is everywhere equal to a certain tolerance “Tol” specified by the user.

Let y1 be the numerical solution of the Runge–Kutta method. We construct a second
Runge–Kutta method with ŷ1 being the numerical approximation. We estimate the local error
by using the difference ŷ1 − y1.

2 Embedded method

Let an s-stage method of order p be given, with coefficients ci, aij , and bj . We look for a an
approximation ŷ1 of order p̂ < p that uses the same function evaluations, i.e.,

ŷ1 = y0 + h(̂b1k1 + . . .+ b̂sks),

where the ki are given by a method from the family of Runge–Kutta methods. The k1 use the
same evaluations of f , but we change the weights bi to b̂i. To have more freedom, one often
adds a term with f(x1, y1), that we need to compute for the next time step in any case, and
look for ŷ1 in the form

ŷ1 = y0 + h
(
b̂1k1 + . . .+ b̂sks + b̂sf(x1, y1)

)
.

Example. For the Runge method, whose Butcher tableau is

0
1
2

1
2

0 1

we can take the explicit Euler method as the embedded method. Indeed, we can use the same
function evaluation k1 = f(t0, y0) from the Euler method into the Runge method. Then

err = y1 − ŷ1 = y0 + h f
(
t0 +

h
2 , y0 +

h
2k1

)
− (y0 + h f(t0, y0)) = h(k2 − k1).

This expression is then an approximation of the local error for the explicit Euler method.
For a general method, one must perform the Taylor expansion of ki and f(x1, y1) and

compare the result with the exact solution. Since the ci and the aij are already known, one
obtains a linear system for the b̂i.

1

3 Calculation of the optimal step size h

If one applies the method with a given value h for the step size, the error estimate satisfies
(p̂ < p)

y1 − ŷ1 = (y1 − y(t0 + h)) + (y(t0 + h)− ŷ1) = O(hp+1) +O(hp̂+1) ≈ C · hp̂+1. (1)

The optimal h, called hopt, is the one for which this estimate y1 − ŷ1 ≈ C · hp̂+1 is close to
Tol, i.e.,

Tol ≈ C · hp̂+1
opt . (2)

Eliminating C from (1) and (2), we obtain

hopt = 0.9 · h · p̂+1

√
Tol

∥y1 − ŷ1∥
. (3)

The factor 0.9 has been added to make the final algorithm “safer”. In general, we also assume
an additional restriction of the type 0.2h ⩽ hopt ⩽ 5h to avoid big changes in h.

For the norm in (3), one typically uses

∥y1 − ŷ1∥ =

√√√√ 1

n

n∑
i=1

(
yi1 − ŷi1

sci

)2

, where sci = 1 +max(|yi0|, |yi1|),

and yi0, yi1, and ŷi1 is the ith component of y0, y1, and ŷ1, respectively. This represents a mix
between relative error and absolute error.

4 Algorithm for the automatic selection of the step size

The algorithm for the automatic selection of the step size is formalized in Algorithm 1.

Algorithm 1: Algorithm for the automatic selection of the step size.
1 Input: the right-hand side f(t, y), initial values t0, y0, h, and the tolerance Tol.
2 while t0 < tend do
3 Using the step size h, compute y1, ŷ1, err = ∥y1 − ŷ1∥, and hopt as in (3).
4 if err ⩽ Tol then
5 t0 ← t0 + h
6 y0 ← y1
7 h← min(hopt, tend − t0)

8 else
9 h← hopt

10 end if
11 end while

5 A concrete example: the Dormand–Prince method

The Dormand–Prince method (1980) is an adaptive step-size Runge–Kutta method which
estimates the error by calculating two approximations at each step: one with 4th-order and

2

one with 5th-order accuracy, and the local error is estimated by taking the difference between
the 4th-order and the 5th-order solution. The step size is then adjusted to minimize the error,
making the method efficient and reliable.

The Dormand–Prince method is important because it is the default method behind the
ode45 solver for MATLAB1. The Butcher tableau for the Dormand–Prince method is the
following:

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45 −56

15
32
9

8
9

19372
6561 −25360

2187
64448
6561 −212

729

1 9017
3168 −355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 −2187

6784
11
84

35
384 0 500

1113
125
192 −2187

6784
11
84 0

5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

The second-to-last row provides the 5th-order solution coefficients, and the last row presents
the 4th-order coefficients for error estimation. Below, you have a friendlier text version that
you can directly copy-paste into your MATLAB implementation:

A = [0, 0, 0, 0, 0, 0;
1/5, 0, 0, 0, 0, 0;
3/40, 9/40, 0, 0, 0, 0;
44/45, -56/15, 32/9, 0, 0, 0;
19372/6561, -25360/2187, 64448/6561, -212/729, 0, 0;
9017/3168, -355/33, 46732/5247, 49/176, -5103/18656, 0;
35/384, 0, 500/1113, 125/192, -2187/6784, 11/84];

c = [1/5, 3/10, 4/5, 8/9, 1, 1]’;
w1 = [35/384, 0, 500/1113, 125/192, -2187/6784, 11/84];
w2 = [5179/57600, 0, 7571/16695, 393/640, -92097/339200, 187/2100, 1/40];

6 Your task

Implement the Dormand–Prince method with adaptive step-size control and apply it to nu-
merically solve the problem (called “Brusselator”, describing a chemical reaction){

y′1 = 1 + y21y2 − 4y1

y′2 = 3y1 − y21y2
with initial conditions

{
y1(0) = 1.5

y2(0) = 3
(4)

on the interval [0, 20]. Use a tolerance Tol = 10−6 (in MATLAB, write Tol = 1e-6).
1You may want to have a look at the MATLAB documentation here: https://www.mathworks.com/help/

matlab/ref/ode45.html

3

https://www.mathworks.com/help/matlab/ref/ode45.html
https://www.mathworks.com/help/matlab/ref/ode45.html

Hints:

Your code should be composed of three scripts:

1. One MATLAB function (you may call it RK45.m) implementing the Dormand–Prince
algorithm with the automatic step-size selection. In particular:

• For the Dormand–Prince method, use the formulas of the Runge–Kutta family,
specialized with the coefficients provided in the Butcher tableau above.

• For the automatic selection of the step size, keep as a reference Algorithm 1 above.

2. Another MATLAB function that implements the “Brusselator” right-hand side from (4).

3. One script that will serve as the main driver of your code, with the parameters h, t0,
tend, Tol, the right-hand side f(t, y) defined as a MATLAB function handle, and the
initial conditions provided in (4). In the main script, you should calculate the numerical
solutions (i.e., the two trajectories y1 and y2) and plot them. Your plot should look
similar to the one in Figure 1 below.

Time (t)
0 2 4 6 8 10 12 14 16 18 20

S
o
lu

ti
o
n

(y
)

0

1

2

3

4

5
y1

y2

Figure 1: Numerical solution of the Brusselator ODE.

4

	1 Introduction
	2 Embedded method
	3 Calculation of the optimal step size h
	4 Algorithm for the automatic selection of the step size
	5 A concrete example: the Dormand–Prince method
	6 Your task

