UNE FAÇON POSSIBLE DE RAISONNER:

Par exemple, première chose à vérifier: <u>élément mentre?</u>

Si <u>NON</u> -> c'est par un S. E. V.

Si <u>OUI</u> > on continue en vérifiant la <u>Prop 1.4</u>:

(b,c): Væ, y \in F, \text{ Y \lambda, \mu \in IR}: \text{ X \text{ X + \mu y \in F}} (Stabilité des lois)

Série 2, Espaces Vectoriels

UNE AUTRE FAÇON: TROUVER DES CONTRE-EXEMPLES ?

23 septembre 2020

Exercice 1. (Est ce un sous-espace vectoriel?).

- (1) Les sous-ensembles suivants de \mathbb{R}^2 sont-ils des sous-espaces vectoriels sur \mathbb{R} ?
 - (a) $E = \{(x, y) \in \mathbb{R}^2 \mid x = y \text{ et } x \ge 0\}$
 - (b) $E = \{(x, y) \in \mathbb{R}^2 \mid 2x 5y = 1\}$
 - (c) $E = \{(x, y) \in \mathbb{R}^2 \mid xy = 0\}.$

Solution:

(a) Non. En effet, pour l'élément (x,y) dans E, son inverse (-x,-y) n'appartient pas à E (car -x est négatif). Autre façon de le prouver, si on choisit λ un réel négatif alors la multiplication par ce scalaire n'est pas stable i.e. $\lambda(x,y)=(\lambda x,\lambda y)$ n'appartient pas à E (car λx est négatif).

2<0

- (b) Non. En effet, le neutre (0,0) n'est pas dans l'ensemble E.
- (c) Non. En effet, (1,0) et $(0,1) \in E$, mais (1,1) = (1,0) + (0,1) n'est pas dans l'ensemble. Ainsi l'addition n'est pas stable.
- (2) Les sous-ensembles suivants de \mathbb{R}^3 sont-ils des sous-espaces vectoriels sur \mathbb{R} ?
 - (a) $E = \{(x, y, z) \in \mathbb{R}^3 \mid x = 1\}$
 - (b) $E = \{(x, y, z) \in \mathbb{R}^3 \mid y = 0\}$
 - (c) $E = \{(x, 2x, 3x) \mid x \in \mathbb{R}\}$
 - (d) $E = \{(x, y, z) \in \mathbb{R}^3 \mid y^2 x^3 = 0\}$
 - (e) $E = \{(x, y, z) \in \mathbb{R}^3 \mid x = y \text{ et } 3y 2z = 0\}.$

Solution:

- (a) Non. En effet, le neutre (0,0,0) n'est pas dans l'ensemble.
- (b) Oui. Remarquons d'abord que l'ensemble n'est pas vide puisque (0,0,0) appartient à E. Montrons ensuite que les lois sont stables : soient (x,0,z) et $(x',0,z') \in E$ et $\lambda \in \mathbb{R}$ alors

$$(x,0,z) + (x',0,z') = (x+x',0+0,z+z') \in E$$

$$\lambda \cdot (x, 0, z) = (\lambda x, \lambda 0, \lambda z) = (\lambda x, 0, \lambda z) \in E.$$

Par la proposition du cours, E est bien un sous-espace vectoriel sur \mathbb{R} .

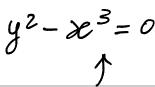
(c) Oui. Remarquons d'abord que l'ensemble n'est pas vide puisque (0,0,0) appartient à E. Montrons ensuite que les lois sont stables : soient (x,2x,3x) et $(x',2x',3x') \in E$ et $\lambda \in \mathbb{R}$ alors

$$(x,2x,3x)+(x',2x',3x')=(x+x',2x+2x',3x+3x')=(x+x',2(x+x'),3(x+x'))\in E$$

$$\lambda \cdot (x, 2x, 3x) = (\lambda x, \lambda 2x, \lambda 3x) = (\lambda x, 2(\lambda x), 3(\lambda x)) \in E$$
. C'est une droite

Par la proposition du cours, E est bien un sous-espace vectoriel sur \mathbb{R} .

de R



- (d) Non. En effet, les éléments (1,1,0) et (1,-1,0) sont dans l'ensemble, mais leur somme (2,0,0) ne l'est pas. Donc l'addition n'est pas stable.
- (e) Oui. Remarquons d'abord que l'ensemble n'est pas vide puisque (0,0,0) appartient à E. Montrons ensuite que les lois sont stables : soient (x,y,z) et $(x',y',z') \in E$ et $\lambda \in \mathbb{R}$ (ce qui implique que x=y, x'=y', 3y-2z=0 et que 3y'-2z'=0) alors

$$(x, y, z) + (x', y', z') = (x + x', y + y', z + z')$$

Or x = y et x' = y' implique que x + x' = y + y' et 3y - 2z = 0 et 3y' - 2z' = 0 implique que 3(y + y') - 2(z + z') = 0. Donc $(x + x', y + y', z + z') \in E$.

$$\lambda \cdot (x, y, z) = (\lambda x, \lambda y, \lambda z)$$

Or x=y implique que $\lambda x=\lambda y$ et 3y-2z=0 implique que $0=\lambda(3y-2z)=3\lambda y-2\lambda z$. Donc $(\lambda x,\lambda y,\lambda z)\in E$.

Par la proposition du cours, E est bien un sous-espace vectoriel sur \mathbb{R} .

- (3) Les sous-ensembles suivants de $\mathbb{R}[x]$ (l'ensemble des polynômes) sont-ils des sous-espaces vectoriels sur \mathbb{R} ?
 - (a) $E = \{ p \in \mathbb{R}[x] \mid \deg(p) \le 2 \}$

polynômes? $p_n(x) = \sum_{i=1}^{m} a_i x^i$

- (b) $E = \{ p \in \mathbb{R}[x] \mid \deg(p) \ge 2 \}$
- (c) $E = \{ p \in \mathbb{R}[x] \mid p(x^2) = p'(x) + x^4 p(x) \}.$

Solution:

~ le polynôme mulle

(a) Oui. Remarquons d'abord que l'ensemble n'est pas vide puisque 0 (qui peut-être vu comme un polynôme) appartient à E.

Montrons ensuite que les lois sont stables : soient $p(x) = \sum_{i=0}^{2} a_i x^i$ et $q(x) = \sum_{i=0}^{2} b_i x^i \in E$ et $\lambda \in \mathbb{R}$ (on peut prendre deux polynômes de degré 2 car au pire si on prend un polynôme de degré plus petit, on lui rajoute des termes qui valent 0) alors

$$p(x) + q(x) = \sum_{i=0}^{2} a_i x^i + \sum_{i=0}^{2} b_i x^i = \sum_{i=0}^{2} (a_i + b_i) x^i \in E$$

$$\lambda \cdot p(x) = \sum_{i=0}^{2} \lambda a_i x^i$$

Dans les deux cas, les opérations n'augmente pas le degré des polynômes donc les lois sont stables et E est bien un sous-espace vectoriel sur \mathbb{R} .

- (b) Non. En effet, les polynômes x^2 et $1-x^2$ sont dans l'ensemble, mais leur somme, 1, ne l'est pas. Donc l'addition n'est pas stable.
- (c) Oui. Remarquons d'abord que l'ensemble n'est pas vide puisque 0 (qui peut-être vu comme un polynôme) appartient à E.

Montrons ensuite que les lois sont stables : soient p(x) et q(x) et $\lambda \in \mathbb{R}$ alors

$$(p+q)(x^2) = p(x^2) + q(x^2) = p'(x) + x^4p(x) + q'(x) + x^4q(x) = (p+q)'(x) + x^4(p+q)(x)$$

$$(\lambda \cdot p)(x^2) = \lambda p(x^2) = \lambda (p'(x) + x^4 p(x)) = \lambda p'(x) + x^4 \lambda p(x) = (\lambda p)'(x) + x^4 (\lambda p)(x)$$

car la dérivée est linéaire. Donc l'addition et la multiplication par un scalaire sont stables et E est un sous-espace vectoriel sur \mathbb{R} .

- (4) Soit n un entier, $n \geq 2$. On note $M_{n,n}(\mathbb{R})$ l'ensemble des matrices $n \times n$ (tableau $n \times n$) avec les lois additions et de multiplication terme à terme (comme pour $M_{2,2}(\mathbb{R})$). Les parties suivantes de $M_{n,n}(\mathbb{R})$ sont-elles des sous-espaces vectoriels sur \mathbb{R} ?
 - (a) $E = \{M \in M_{n,n}(\mathbb{R}) \mid \text{ la deuxième colonne de } M \text{ est nulle}\},$
 - (b) $E = \{M \in M_{n,n}(\mathbb{R}) \mid \text{deux colonnes de } M \text{ sont identiques}\}.$

Solution:

s n'importe lesquelles

(a) Oui. Remarquons d'abord que E n'est pas vide car il contient la matrice composée de 0 . La matrice Montrons maintenant que les lois sont stables : soient $M, N \in E$ et $\lambda \in \mathbb{R}$ alors

Puisque α l'addition entre M et N se fait termes à termes alors les éléments de la 2e colonne de M vont s'ajouter aux éléments de la 2e colonne de N. Comme tous ces éléments sont nuls alors leur somme aussi sera nulle et M+N aura sa 2e colonne nulle. Donc $M+N\in E$.

De la même manière $\lambda \cdot M$ est la matrice qui contient chaque élément de M multiplié avec λ . Comme un nombre multiplié à 0 donne 0, les termes de la 2e colonne de $\lambda \cdot M$ seront tous nuls et donc $\lambda \cdot M \in E$.

Ainsi E est bien un sous-espace vectoriel sur \mathbb{R} .

(b) Oui pour n=2. En effet E n'est pas vide car il contient la matrice composée de 0. De plus, les lois sont stables : soient $M, N \in E$ et $\lambda \in \mathbb{R}$ alors

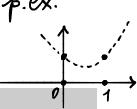
Puisque \mathbf{a} l'addition entre M et N se fait termes à termes et que les deux colonnes de M sont identiques et que les deux colonnes de N aussi alors leur somme donnera deux colonnes identiques. Donc $M + N \in E$.

De la même manière $\lambda \cdot M$ est la matrice qui contient chaque élément de M multiplié avec λ . Comme tous les éléments sont multipliés par le même scalaire (ici λ) alors les deux colonnes restent identiques et donc $\lambda \cdot M \in E$.

Ainsi E est bien un sous-espace vectoriel sur \mathbb{R} .

Non. Pour n > 2 par contre, ce n'est plus le cas. En effet, l'addition n'est pas stable si on prend deux matrices M et N qui n'ont pas les même colonnes identiques.

- (5) Les sous-ensembles suivants de $\mathcal{F}(\mathbb{R},\mathbb{R})$ sont-ils des sous-espaces vectoriels?
 - (a) $\{f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(0) = f(1)\},\$
 - (b) $\{f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(0) = 1\}.$
 - (c) $\{f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f \text{ est dérivable sur } \mathbb{R} \text{ et pour tout } x \in \mathbb{R}, f'(x) = f(x)\}.$
 - (d) $\{f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f \text{ est dérivable sur } \mathbb{R} \text{ et pour tout } x \in \mathbb{R}, f'(x) = f(x)^2\}.$
 - (e) $\{f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f \text{ est dérivable sur } \mathbb{R} \text{ et pour tout } x \in \mathbb{R}, f'(x) = -xf(x)\}.$



Solution:

(a) Oui. Remarquons d'abord que E n'est pas vide car il contient la fonction constante 0. Maintenant, montrons que les lois sont stables : soient $f, g \in E$ et $\lambda \in \mathbb{R}$ alors

$$(f+g)(0) = f(0) + g(0) = f(1) + g(1) = (f+g)(1) \Longrightarrow f+g \in E$$

$$(\lambda \cdot f)(1) = \lambda f(1) = \lambda \cdot f(0) = (\lambda \cdot f)(0) \Longrightarrow \lambda \cdot f \in E.$$

Ainsi E est bien un sous-espace vectoriel sur \mathbb{R} .

- (b) Non. En effet, le neutre pour l'addition (ici la fonction constante 0) n'appartient pas à l'ensemble. Autre façon de le prouver est de remarquer que l'addition n'est pas stable dans E: soient f et $g \in E$ alors $(f+g)(0) = f(0) + g(0) = 1 + 1 = 2 \neq 1$.
- (c) Oui. Remarquons d'abord que E n'est pas vide car il contient la fonction constante 0.

Montrons maintenant que les lois sont stables : soient
$$f, g \in E$$
 et $\lambda \in \mathbb{R}$ alors $f(f+g)'(x) = f'(x) + g'(x) = f(x) + g(x) = (f+g)(x) \Longrightarrow f+g \in E$

$$(\lambda \cdot f)'(x) = \lambda f'(x) = \lambda f(x) = (\lambda \cdot f)(x) \Longrightarrow \lambda \cdot f \in E.$$

Ainsi E est bien un sous-espace vectoriel sur \mathbb{R} .

- (d) Non. On vérifie facilement que $f(x) = \frac{1}{x}$ est dans l'ensemble, mais que $(2 \cdot f)(x) = 2f(x) = \frac{2}{x}$ ne l'est pas donc la multiplication par un scalaire n'est pas stable.
- (e) Oui. Remarquons d'abord que E n'est pas vide car il contient la fonction constante 0. Maintenant, montrons que les lois sont stables : soient $f, g \in E$ et $\lambda \in \mathbb{R}$ alors

$$(f+g)'(x) = f'(x) + g'(x) = -xf(x) - xg(x) = -x(f(x) + g(x)) = -x(f+g)(x) \Longrightarrow f+g \in E$$

$$(\lambda \cdot f)'(x) = \lambda f'(x) = \lambda (-x)f(x) = -x(\lambda \cdot f)(x) \Longrightarrow \lambda \cdot f \in E.$$

L'ensemble E est donc bien un sous-espace vectoriel sur \mathbb{R} .

Exercice 2.

1. Donner un exemple de sous-ensemble non vide U de \mathbb{R}^2 qui vérifie

$$\forall u \in U, \forall v \in U, \quad u + v \in U,$$

 $\forall u \in U, \quad -u \in U$

mais qui ne soit pas un sous-espace vectoriel de \mathbb{R}^2 .

Solution:

Un exemple possible est $\mathbb{Z}^2 = \{(x,y) \in \mathbb{R} | x,y \in \mathbb{Z}\}$ avec les lois usuelles. En effet, il satisfait les deux conditions (on dit que c'est un *sous-groupe*), mais ce n'est pas un espace vectoriel sur \mathbb{R} puisque la multiplication par un scalaire n'est pas stable :

$$(1,1) \in \mathbb{Z}^2 \text{ mais } \sqrt{2} \cdot (1,1) = (\sqrt{2},\sqrt{2}) \notin \mathbb{Z}^2.$$

2. Donner un exemple de sous-ensemble non vide U de \mathbb{R}^2 qui vérifie :

$$\forall u \in U, \forall \lambda \in \mathbb{R}, \quad \lambda \cdot u \in U$$

mais qui ne soit pas un sous-espace vectoriel de \mathbb{R}^2 .

Solution:

Un exemple possible est $E = \mathbb{R} \times \{0\} \cup \{0\} \times \mathbb{R}$ muni des lois usuelles. Il satisfait la condition mais ce n'est pas un espace vectoriel sur \mathbb{R} car l'addition n'est pas stable :

$$(1,0),(0,1) \in E$$
 mais leur somme $(1,1) \notin E$.

Exercice 3.

1. Montrer que l'espace des suites nulles à partir d'un certain rang est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$ (voir Feuille de Serie 1).

2. On note F l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ tel qu'il existe $a \in \mathbb{R}$ et f(x) = 0 pour tout $x \geq a$. Montrer que F est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R},\mathbb{R})$.

Solution:

1. Traduisons la phrase mathématiquement. Nous voulons montrer que l'ensemble

$$V = \{(a_k)_{k \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} | \exists N \in \mathbb{N}, \forall n \ge N, a_n = 0\}$$

est un sous-espace vectoriel. On remarque d'abord que l'ensemble n'est pas vide, puisqu'il contient l'identité, i.e. la suite constante en 0.

La multiplication par un scalaire est stable. En effet, prenons $(x_k)_{k\in\mathbb{N}}\in V$ et $\lambda\in\mathbb{R}$. On veut montrer $\lambda \cdot (x_k)_{k \in \mathbb{N}} = (\lambda x_k)_{k \in \mathbb{N}} \in V$. On sait qu'il existe $N' \in \mathbb{N}$ tel que pour tout $n \geq N'$, $x_n = 0$. Posons N = N'. Soit $n \ge N$. Alors $n \ge N'$ implique $\lambda x_n = \lambda 0 = 0$.

L'addition est aussi stable. On prend $(x_k)_{k\in\mathbb{N}}, (y_k)_{k\in\mathbb{N}}\in V$, et on veut montrer $(x_k)_{k\in\mathbb{N}} + (x_k)_{k\in\mathbb{N}} = (x_k + y_k)_{k\in\mathbb{N}}\in V.$

$$(x_k)_{k\in\mathbb{N}}+\mathcal{N}$$

On sait qu'il existe $N_1 \in \mathbb{N}$ tel que pour tout $n \geq N_1, x_n = 0$ et $N_2 \in \mathbb{N}$ tel que pour tout $n \geq N_2, y_n = 0$. On pose $N = \max(N_1, N_2)$. Soit $n \geq N$. Alors $n \geq N_1$ et $n \geq N_2$ impliquent $x_n + y_n = 0 + 0 = 0.$

2. Traduisons une nouvelle fois la phrase mathématiquement. Nous voulons montrer que l'ensemble

même chose, mais avec

$$F = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) | | \exists a \in \mathbb{R}, \forall x \ge a, f(x) = 0 \}$$

est un sous-espace vectoriel. On remarque d'abord que l'ensemble n'est pas vide, puisqu'il contient est un sous-espace vectoriei. Un remarque la fonction principal l'identité, i.e. la fonction constante en 0.

La multiplication par un scalaire est stable. En effet, prenons $f \in F$ et $\lambda \in \mathbb{R}$. On veut montrer $\lambda \cdot f \in F$. On sait qu'il existe $a' \in \mathbb{R}$ tel que pour tout $x \geq a'$, f(x) = 0. Posons a = a'. Soit $x \geq a$. Alors $x \geq a'$ implique

$$(\lambda \cdot f)(x) = \lambda f(x) = \lambda 0 = 0.$$

L'addition est aussi stable. On prend $f_1, f_2 \in F$, et on veut montrer $f_1 + f_2 \in F$. On sait qu'il existe $a_1 \in \mathbb{R}$ tel que pour tout $x \geq a_1, f_1(x) = 0$ et $a_2 \in \mathbb{R}$ tel que pour tout $x \geq a_2, f_2(x) = 0$. On pose $a = \max(a_1, a_2)$. Soit $x \ge a$. Alors $x \ge a_1$ et $x \ge a_2$ impliquent

$$(f_1 + f_2)(x) = f_1(x) + f_2(x) = 0 + 0 = 0.$$

Exercice 4. Soit E un sous-espace vectoriel de l'espace vectoriel \mathbb{R} . Montrer que'on a soit $E = \{0\}$, soit

- DISJONCTION NON EXCLUSIVE: "OU"

On peut d'abord vérifier via un tableau de vérité que $A \lor B$ est équivalent à $\neg A \Rightarrow B$. En utilisant L"NEGATION DE" OU "NON" cela, on montre la proposition en prouvant que

si E n'est pas égal à $\{0\}$, alors E est l'espace vectoriel \mathbb{R} .

Supposons que E n'est pas égal à $\{0\}$, alors il existe un élément $x_0 \in \mathbb{R}^*$ dans E. Comme E un espace vectoriel et x_0 est non-nul, on sait que

$$1 = x_0^{-1} \cdot x_0 \in E$$
. Inverse de \mathbf{Z}

I él inverse de 20 de la multiplication et I él neutre de la multiplication

Solution:

Page 5

On regarde x_0 comme un élément de E et x_0^{-1} comme un scalaire et \cdot comme la multiplication par un scalaire. Donc 1 appartient à E.

Montrons maintenant que $\mathbb{R} \subset E$, i.e. la phrase $\forall x \in \mathbb{R}, x \in E$. Soit $x \in \mathbb{R}$. On sait déjà $1 \in E$, ce qui implique que $x \cdot 1 = x$ est dans E.

On a donc montré $\mathbb{R} \subset E$, et $E \subset \mathbb{R}$ est vrai par definition. Cela veut dire $\mathbb{R} = E$ (c'est ce qu'on appelle une preuve par double inclusion). Donc si E est un sous-espace vectoriel de \mathbb{R} et que E n'est pas trivial, dans le sens où $E \neq \{0\}$, alors $E = \mathbb{R}$.

A: "E est égal	à {0}"
B:"E est égal	à R"

A	B	AVB
Vrai	Vrai	Vrai
Vrai	haux	Vrai
haux	vrai	vrai
haux	faux	hanx K Mi

A	$\neg A$	B	$\neg A \Rightarrow B$
Vrai	haux	Vrai	Vrai
Vrai	kaux	haux	Vrai
haux	Vrai	vrai	vrai
faux	Vrai	faux	faux

A	¬ A
Vrai	howx
faux	Yrai

C	D	$C \Rightarrow D$
Vrai	Vrai	vrai
Vrai	haux	faux
haux	vrai	Virai
haux	faux	Vrai