
Notes on line search, trust regions, and the BFGS
methods

Marco Sutti ∗

July 11, 2024

In these notes, we present the classical, standard (i.e., Euclidean) BFGS method,
mainly following the presentation given in [NW06]. In the upcoming seminar of Thurs-
day 10th November, we will discuss how to generalize the standard BFGS to Riemannian
manifolds, according to the formulation of [RW12].

1 Preliminaries
We first review some concepts about line search, steepest descent, and trust region
algorithms. Our purpose is to prepare the ground for the introduction of the BFGS
quasi-Newton method. In numerical optimization algorithms, there are two main strate-
gies: line search and trust regions.

1.1 Line-search methods

In classical optimization (minimization), line-search methods are widely used. They
update the iterate xk by choosing a search direction pk and then adding a multiple αk

of this direction to the old iterate to obtain xk+1. Algorithm 1 summarizes the general
form of line-search algorithms.

Algorithm 1: Line-search minimization.
Given f : Rn → R, starting point x0 ∈ Rn;
k ← 0;
repeat

Compute a descent direction pk;
Set xk+1 = xk + αkpk, where αk is computed from a line search
procedure to satisfy the Wolfe conditions (1.1);
k ← k + 1;

until xk+1 sufficiently minimizes f ;

∗National Center for Theoretical Sciences, Mathematics Division, Room 406, 4F of Chee-Chun
Leung Cosmology Hall, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617,
Taiwan (R.O.C.) (msutti@ncts.ntu.edu.tw).

1

https://orcid.org/0000-0002-8410-1372
https://www.medaschool.ai/activity/meda-seminar
https://www.medaschool.ai/activity/meda-seminar
mailto:msutti@ncts.ntu.edu.tw


2

If we choose as descent direction pk = −∇fk, then we obtain the steepest de-
scent method. We refer the reader to [NW06, Ch. 3] for more details on line-search
techniques. If you have time, you can also have a look at these slides.

The usual stopping criterion for line search is the weak Wolfe conditions, which we
recall here. Let f be a differentiable objective function. Let xk be the current iterate,
∇fk = ∇f(xk) the gradient, and pk the search direction. The weak Wolfe conditions
for the step size αk > 0 are defined by

f(xk + αkpk)− f(xk) ⩽ c1αk p
⊤
k∇fk, p⊤k∇f(xk + αkpk) ⩾ c2 p

⊤
k∇fk, (1.1)

with 0 < c1 < c2 < 1. The first inequality is known as sufficient decrease, or Armijo,
condition, while the second represents a curvature condition. One can reformulate the
weak Wolfe conditions in terms of ϕ(αk) = f(xk + αkpk) as follows:

c1 ϕ
′(0) ⩾

ϕ(αk)− ϕ(0)

αk

, ϕ′(αk) ⩾ c2 ϕ
′(0),

with 0 < c1 < c2 < 1. Since we are moving along a descent direction for f , we observe
that the slope ϕ′(0) and the difference ϕ(αk)−ϕ(0) are negative. The first inequality is
thus asking for the decrease in ϕ at αk to be larger than c1 ϕ

′(0). The second inequality
is asking for the slope of ϕ at αk to be larger than c2 ϕ

′(0). Figure 1 illustrates the weak
Wolfe conditions in terms of ϕ.

α

φ(α)

δ φ′(0)φ(0)

αk0

φ(αk)

φ′(αk)

Figure 1: Illustration of the weak Wolfe conditions in terms of ϕ. From [Sut20, Fig. 5.1].

1.2 Trust-region methods

In trust region methods, the information gathered about f is used to construct a model
mk whose behavior around the current iterate xk approximates that of the actual ob-
jective function f . We restrict the search for a minimizer of mk to some region around
xk where the suitability of the model mk can be trusted (hence the name of this
algorithmic strategy, trust-regions).

Last modified: July 11, 2024

https://marcosutti.net/talks/20220429_Talk_Academia_Sinica.pdf


3

Figure 2: Two possible trust regions (circles) and their corresponding steps pk. The
solid lines are contours of the model function mk. Illustration from [NW06, Fig. 2.4].

Problem statement: Find the (candidate) direction p by solving the sub-
problem

min
p

mk(xk + p), where xk + p lies inside the trust region.

If the candidate solution does not produce a sufficient decrease in f , we conclude that
the trust region is too large, so we shrink it and re-solve the subproblem. Usually, the
trust region is a ball defined by ∥p∥2 ⩽ ∆, where the scalar ∆ is called trust-region
radius. The model mk is usually defined to be a quadratic function of the form

mk(xk + p) = fk + p⊤∇fk + 1
2
p⊤Bk p,

where fk := f(xk), ∇fk := ∇f(xk) the matrix Bk is either the Hessian ∇2fk or some
approximation to it (like in the case of BFGS, see section 2.1).

Each time we decrease the size of the trust region after the failure of a candidate
iterate, the step from xk to the new candidate will be shorter, and it usually points
in a different direction from the previous candidate, see Figure 2. In this sense, the
trust-region strategy differs from line search. Observe and compare:

• Line search: starts by choosing a direction pk, then computes an acceptable step
size αk (e.g., using Wolfe conditions (1.1));

• Trust region: starts by choosing a maximum distance (i.e., the trust-region radius
∆k) and then computes a direction and step that gives the best improvement
possible subject to the distance constraint ∥p∥2 ⩽ ∆.

We refer the reader to [NW06, Ch. 4] for more details on trust-region methods.

Last modified: July 11, 2024



4

1.3 Search directions for line-search methods

In this section, we recall the three main directions used in classical optimization
algorithms.

1. Steepest descent direction: the direction of steepest descent is the direction
of the negative gradient: −∇fk, see Figure 3. We do not discuss it further here
since our focus is on quasi-Newton methods.

Figure 3: Steepest descent direction for a function of two variables. Illustration
from [NW06, Fig. 2.5].

2. Newton direction: Consider the second-order Taylor series approximation to
f(xk + p), i.e.,

f(xk + p) ≈ fk + p⊤∇fk + 1
2
p⊤∇2fk p =: mk(p),

Assuming ∇2fk ≻ 0, we obtain the Newton direction by finding the vector p that
minimizes mk(p). Setting the derivative of mk(p) w.r.t. p to 0, i.e.,

∇fk +∇2fk p = 0,

and solving for p, we find the Newton direction

pNk = −
(
∇2fk

)−1 ∇fk. (1.2)

Unlike the steepest descent direction, there is a “natural” step length of 1 associ-
ated with the Newton direction. Most line search implementations of Newton’s
method use the unit step α = 1 where possible and adjust α only when it does
not produce a satisfactory reduction in the value of f .

The main drawback of the Newton direction is the need for the Hessian, which
can be computationally expensive.

Last modified: July 11, 2024



5

3. Quasi-Newton search directions: do not require computation of the Hessian
and yet still attain a superlinear rate of convergence.

Instead of the exact Hessian ∇2fk, they use an approximation Bk in the Newton
direction formula (1.2), i.e.,

pk = −B−1
k ∇fk.

The idea is that changes in the gradient provide information about the second
derivative of f along the search direction.

We choose the Hessian approximation Bk such that it satisfies the following con-
dition, known as the secant equation:

Bk+1sk = yk,

where
sk = xk+1 − xk, and yk = ∇fk+1 −∇fk.

Reason for this name: for a real-valued function of one real variable g : R → R,
the ratio yk/sk is the slope of a secant line joining two points on a curve. Figure 4
illustrates this concept for the gradient ∇f(x).

x

∇f(x)

0

∇fk

xk xk+1

∇fk+1

secant line



sk























yk

Figure 4: The meaning of the secant equation.

Then, we usually impose additional conditions on Bk, such as:

• symmetry (this is motivated by the symmetry of the exact Hessian);

• a requirement that the difference between successive approximations Bk and
Bk+1 have low rank.

Last modified: July 11, 2024



6

The most popular formula for updating the Hessian approximation Bk is the
BFGS formula (Broyden, Fletcher, Goldfarb, and Shanno), defined by:

Bk+1 = Bk−
Bksks

⊤
k Bk

s⊤k Bksk
+

yky
⊤
k

y⊤k sk︸ ︷︷ ︸
rank-2 matrix

. (1.3)

Note that the difference between Bk and Bk+1 is a rank-two matrix. This direction
Bk+1 satisfies the secant condition and maintains symmetry.

We refer the reader to [NW06, Ch. 2] for more details on search directions in line-
search methods.

2 Quasi-Newton methods
We refer the reader to [NW06, Ch. 2] for all the details on quasi-Newton methods.
Here, we only give the main concepts.

The search direction has the form:

pk = −B−1
k ∇fk.

We assume here that the step length αk is computed by an inexact line search that
satisfies the Wolfe or strong Wolfe conditions, with the same proviso mentioned above
for Newton’s method: The line search algorithm will always try the step length α = 1
first, and will accept this value if it satisfies the Wolfe conditions. This implementation
detail turns out to be crucial in obtaining a fast rate of convergence.

Like steepest descent, quasi-Newton methods require only first-order information
(the gradient) of the objective function to be supplied at each iterate. By measuring the
changes in gradients, they construct a model of the objective function that is good
enough to produce superlinear convergence.

2.1 BFGS

We begin the derivation by forming the following quadratic model mk of the objective
function at the current iterate xk:

mk(p) = fk + p⊤∇fk + 1
2
p⊤Bk p,

Again, Bk is an approximation to the Hessian; it is an n×n symmetric positive definite
matrix that will be updated at every iteration k. The minimizer of this convex quadratic
model

pk = −B−1
k ∇fk (2.1)

is used as search direction, and the new iterate is given by

xk+1 = xk + αkpk,

Last modified: July 11, 2024



7

where αk is chosen to satisfy the Wolfe conditions (1.1). Therefore, the algorithmic
strategy is exactly like the one outlined in Algorithm 1, with the only difference being
that here the search direction is chosen according to (2.1).

A central feature of BFGS is that instead of computing Bk afresh at every iteration,
Davidon [Dav91] proposed to update it to account for the curvature measured during
the most recent step.

Suppose that we have generated a new iterate xk+1 and wish to construct a new
quadratic model of the form

mk+1(p) = fk+1 + p⊤∇fk+1 +
1
2
p⊤Bk+1 p,

What requirements should we impose on Bk+1, based on the knowledge gained during
the latest step? The first condition is known as secant equation [NW06, eq. (6.6)]:

Bk+1sk = yk, (2.2)

where
sk = xk+1 − xk, and yk = ∇fk+1 −∇fk.

The secant equation requires that the symmetric positive definite matrix Bk+1 map sk
into yk. This is possible only if sk and yk satisfy the curvature condition

s⊤k yk > 0. (2.3)

When f is strongly convex (which means ∇2f ≻ 0 for a differentiable f), this inequality
is satisfied for any two points xk and xk+1. However, this condition will not always
hold for nonconvex functions, and in this case, we need to enforce (2.3) explicitly by
imposing restrictions on the line search procedure that chooses the step length α. In
fact, the condition (2.3) is guaranteed to hold if we impose the Wolfe (1.1) or strong
Wolfe conditions [NW06, eq. (3.7)] on the line search. When the curvature condition is
satisfied, the secant equation (2.2) always has a solution Bk+1.

To determine Bk+1 uniquely, we impose the additional condition that among all
symmetric matrices satisfying the secant equation, Bk+1 is, in some sense, closest to
the current matrix Bk. In other words, we solve the problem:

min
B
∥B −Bk∥,

subject to B = B⊤, Bsk = yk.

In this optimization problem,

1. minB ∥B −Bk∥ represents the closeness to Bk;

2. B = B⊤ is the symmetry constraint;

3. Bsk = yk is the secant equation constraint.

Last modified: July 11, 2024



8

The solution to this optimization problem yields the Davidon–Fletcher–Powell (DFP)
updating formula (Davidon, 1959), which we do not further discuss here; see [Dav91,
NW06] for more details.

The BFGS updating formula can be derived if instead of imposing conditions on the
Hessian approximations Bk, we impose similar conditions on their inverses Hk = B−1

k .
The updated approximation Hk+1 must be symmetric (Hk+1 = H⊤

k+1) and positive
definite (Hk+1 ≻ 0) and must satisfy the secant equation, now written as

Hk+1 yk = sk.

The condition of closeness to Hk is now specified by the following optimization problem

min
H
∥H −Hk∥,

subject to H = H⊤, Hyk = sk.

The unique solution Hk+1 is [NW06, eq. (6.17)]

Hk+1 =
(
I − ρksky

⊤
k

)
Hk

(
I − ρkyks

⊤
k

)
+ ρksks

⊤
k , (2.4)

with ρk := 1/(y⊤k sk).

2.1.1 The algorithm

A last aspect to consider is the choice of the initial approximation H0. There is no
general formula that works well in all cases. One can use specific information about the
problem, for instance, by setting it to the inverse of an approximate Hessian calculated
by finite differences at x0. Otherwise, we can set it to be the identity matrix or a
multiple of the identity matrix H0 = βI, where the multiple is chosen to reflect the
scaling of the variables. Still, there is no good general strategy for choosing β.

Algorithm 2: BFGS method
Given starting point x0, convergence tolerance ε > 0, inverse
Hessian approximation H0 (typically I or βI);
k ← 0;
while ∥∇fk∥ > ε do

Compute search direction pk = −Hk∇fk;
Set xk+1 = xk + αkpk, where αk is computed from a line search
procedure to satisfy the Wolfe conditions;

Define sk = xk+1 − xk and yk = ∇fk+1 −∇fk;
Compute Hk+1 by means of (2.4);
k ← k + 1;

end

Each iteration can be performed at a cost of O(n2) arithmetic operations (plus
the cost of function and gradient evaluations); there are no O(n3) operations such as

Last modified: July 11, 2024



9

linear system solves or matrix–matrix operations. The algorithm is robust, and its
rate of convergence is superlinear, which is fast enough for most practical purposes.
Even though Newton’s method converges more rapidly (that is, quadratically, see talk
of 2022.10.27), its cost per iteration usually is higher, because of its need for second
derivatives and solution of a linear system.

We can derive a version of the BFGS algorithm that works with the Hessian approx-
imation Bk rather than Hk. The update formula for Bk is obtained by simply applying
the Sherman–Morrison–Woodbury formula to (2.4) to obtain (1.3)

Bk+1 = Bk −
Bksks

⊤
k Bk

s⊤k Bksk
+

yky
⊤
k

y⊤k sk
.

A naive implementation of this variant is not efficient for unconstrained minimization
because it requires the system Bkpk = −∇fk to be solved for the step pk, thereby
increasing the cost of the step computation to O(n3).

2.1.2 Implementation

The line search, which should satisfy either the Wolfe conditions (1.1) or the strong
Wolfe conditions [NW06, eq. (3.7)], should always try the step length αk = 1 first,
because this step length will eventually always be accepted (under certain conditions),
thereby producing superlinear convergence of the overall algorithm.

2.1.3 Convergence analysis

Global and local convergence results for BFGS can be found in [NW06, §6.4].
There are no truly global convergence results for general nonlinear objective func-

tions. In other words, we cannot prove that the iterates of these quasi-Newton methods
approach a stationary point of the problem from any starting point and any (suitable)
initial Hessian approximation. Conversely, there are well-known local, superlinear
convergence results that are true under reasonable assumptions.

Here, we only report the local convergence result of BFGS. Please refer to [NW06,
Ch. 2] for the details.

Theorem 2.1 ([NW06, Thm. 6.6]). Suppose that f is twice continuously differentiable
and that the iterates generated by the BFGS algorithm 2 converge to a minimizer x∗

at which the Hessian matrix ∇2f(x) is Lipschitz continuous [NW06, Assumption 6.2].
Suppose also that

∞∑
k=1

∥xk − x∗∥ <∞

holds. Then xk converges to x∗ at a superlinear rate.

References
[Dav91] W. C. Davidon, Variable Metric Method for Minimization, SIAM J. Optim.

1 no. 1 (1991), 1–17. https://doi.org/10.1137/0801001.

Last modified: July 11, 2024

https://marcosutti.net/talks/20221027_MeDA_Seminar_1.pdf
https://marcosutti.net/talks/20221027_MeDA_Seminar_1.pdf
https://doi.org/10.1137/0801001


10

[NW06] J. Nocedal and S. J. Wright, Numerical Optimization, second ed., Springer
New York, NY, 2006. https://doi.org/10.1007/978-0-387-40065-5.

[RW12] W. Ring and B. Wirth, Optimization Methods on Riemannian Manifolds
and Their Application to Shape Space, SIAM J. Optim. 22 no. 2 (2012), 596–
627. https://doi.org/10.1137/11082885X.

[Sut20] M. Sutti, Riemannian algorithms on the Stiefel and the fixed-rank manifold,
Ph.D. thesis, Section de mathématiques, University of Geneva, Dec 2020.

Last modified: July 11, 2024

https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1137/11082885X

	1 Preliminaries
	1.1 Line-search methods
	1.2 Trust-region methods
	1.3 Search directions for line-search methods

	2 Quasi-Newton methods
	2.1 BFGS
	2.1.1 The algorithm
	2.1.2 Implementation
	2.1.3 Convergence analysis



