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Overview

Numerical simulations of problems defined on unbounded domains are chal-
lenging due to limited computational resources. To truncate the simulation
domain one usually introduces absorbing boundary layers.
We consider the BGK approximation to the Boltzmann equation and study
stability and optimization of an absorbing layer developed following the PML
technique. We use ANOVA expansion of multivariate functions to calculate
the Total Sensitivity Indices of the parameters. A small set of important
parameters is found and minimization techniques are used to choose the
optimal parameter values in this set.

Perfectly matched layers (PML)

I Introduced by Bérenger in 1994 starting from
physical considerations on electromagnetic waves

I Waves entering into the PML are damped out
without reflections at the PML interface

I Hagstrom, 2003: modal analysis in Laplace-
Fourier space, applicable only to linear problems

I Key idea: eigenfunctions of the problem outside
and inside the PML are matched
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}}
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Figure 1: Example of PML.

Bhatnagar-Gross-Krook (BGK) model

I The BGK model is an approximation to the Boltzmann equation
∂f

∂t
+ ζ ·∇xf = −1

γ
(f − fB(ρ,u))

I Expansion of f in a basis ξk(ζ) of Hermite polynomials yields

f (t, ζ, x) =
∞∑
k=0

ak(x , t) ξk(ζ)⇒ ∂a
∂t

+ A1
∂a
∂x1

+ A2
∂a
∂x2

= S(a)

I Constant coefficient, symmetric hyperbolic system
I Linear, some nonlinear terms in S(a): Hagstrom’s theory is applicable
I For weakly compressible flows it recovers isentropic Navier-Stokes eqs

BGK+PML model

I PML for the BGK model proposed by Gao et al. [1]
∂a
∂t

+ A1

(
∂a
∂x1

+ σ1 (λ0 a + ω)

)
+ A2

∂a
∂x2

= S(a),

∂ω

∂t
+ α1

∂ω

∂x2
+ (α0 + σ1)ω +

∂a
∂x1

+ λ0 (α0 + σ1) a− λ1
∂a
∂x2

= 0.

I Shape of damping function σ1(x):

σ1(x) = C

(
x − x0

L

)β
, C ' (∆t)−1 .

I We study β, L, α0, α1, λ0, λ1 L x
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Implementation

I 4th-order finite differences in space and 4th-order Runge-Kutta in time
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(a) Simulation without the PML.
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(b) Simulation with the PML.

Figure 2: Density distribution and velocity field at t = 1.00.

Stability analysis through energy decay

I BGK+PML model in matrix form
∂u
∂t

= Pu,

u(x1, x2, t = 0) = f (x1, x2),

Fourier Transform−−−−−−−−−→


dû
dt

= P̂û,

û(k1, k2, t = 0) = f̂ (k1, k2),

d

dt
‖û‖2= û∗(P̂+P̂∗)û ⇒ P̂+P̂∗ ≤ 0⇒ λ0 ≥ 0, α0 ≥ −σ1.

Stability analysis through continued fractions

I Appelö et al. [2] studied the sign of the eigenvalues of P̂ by means of

Theorem – Frank (1946)

Consider any polynomial q(z) of degree n. Let D be a real number and define the
polynomials Q0 and Q1 with real coefficients by

q(iD) ≡ in[Q0(D) + iQ1(D)].

Then there is a continued fraction
Q1(D)

Q0(D)
=

1

c1D + d1 −
1

c2D + d2 −
1

c3D + d3 − · · · −
1

cnrD + dnr
with cj 6= 0 and nr ≤ n. The number of roots of q(z) with positive (negative) real part
equals the number of positive (negative) cj . Moreover, there are n − nr roots on the
imaginary axis.

I The characteristic polynomial p(z) of the symbol P̂ factorizes as:

p(z) = z2 (z + α0 + ik2α1 + σ1)2 µ4(z) ν4(z),

I First coefficient in the continued fraction expansion of µ4(z):

c1 = − 1

2(α0 + σ1)
⇒ α0 > −σ1.

I Second coefficient:

c2 = very complicated!
Assuming σ1 → 0−−−−−−−−→ λ0 = λ1 = 0.

ANOVA expansion of multivariate functions

I ANOVA expansion of a multivari-
ate function with α = α1, . . . , αp

g(α) = g0 +
∑
T ⊆P

gT (αT ).

I In our case g is an error functional of the solution to the BGK+PML
I Central ingredient: multivariate numerical integration, here implemented

with product rules with Gauss-Legendre quadrature, (Gn)p

I From the gT (αT ) it is possible to define the Total Sensitivity Index (TSI)
of a parameter αi , which measures the combined sensitivity of all terms
that depend on αi [3]. These TSIs tell us which parameters are most
important in the ANOVA expansion

Results of the ANOVA analysis

Cubature type α0 α1 β L
(G2)4 0.1638 0.2474 0.2775 0.9312

(G3)4 0.1635 0.1916 0.2879 0.9385

Table 1: TSIs for the parameters α0, α1, β and L, using g(α0, α1, β, L).

α0 α1 β L
2.7561 2.7361 3.3077 0.6717

2.5493 2.0772 3.8463 0.5505

0.4991 0.4749 3.8877 0.4222

0.2551 0.0609 3.9325 0.4133

Table 2: Four sets of optimal values for
the parameters α0, α1, β and L, obtained
by minimizing g(α0, α1, β, L).
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Figure 3: Contour plot of g(β, L).

Future work

I Multivariate numerical integration with sparse grid techniques
I Explore the influence of initial conditions and boundary conditions
I Coupling the BGK+PML model with the Navier-Stokes equations, solving

the former in the PML and the latter in the physical domain
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