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Stability analysis through continued fractions

Numerical simulations of problems defined on unbounded domains are chal-
lenging due to limited computational resources. To truncate the simulation

> Appeld et al. [2] studied the sign of the eigenvalues of P by means of

domain one usually introduces absorbing boundary layers. Theorem — Frank (1946)
We consider the BGK approximation to the Boltzmann equation and study Consider any polynomial g(z) of degree n. Let D be a real number and define the
stability and optimization of an absorbing layer developed following the PML polynomials Qy and Q; with real coefficients by
technique. We use ANOVA expansion of multivariate functions to calculate g(iD) = i"[Qy(D) + iQ:(D)].
the Total Sensitivity Indices of the parameters. A small set of important Then there is a continued fraction
parameters is found and minimization techniques are used to choose the QD) 1
optimal parameter values in this set. Q(D) &D 4+ di — 1

oD+ dy) — ! 7
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Perfectly matched layers (PML) cn,D + d,,

with ¢; # 0 and n, < n. The number of roots of g(z) with positive (negative) real part
equals the number of positive (negative) ¢;. Moreover, there are n — n, roots on the
Imaginary axis.

» Introduced by Bérenger in 1994 starting from
physical considerations on electromagnetic waves

» Waves entering into the PML are damped out
without reflections at the PML interface

» Hagstrom, 2003: modal analysis in Laplace-

» The characteristic polynomial p(z) of the symbol P factorizes as:

p(2) = 22 (z + ag + ikt + 01)° p1a(2) va(2),

WW

Fourier space, applicable only to linear problems  pyygicar domain v » First coefficient in the continued fraction expansion of fi4(z):
> Key .|de.a: eigenfunctions of the problem outside Figure 1 Example of PML. - 1
and inside the PML are matched C = a0 + 01) = | Qg > —O71.

» Second coefficient:

Bhatnagar-Gross-Krook (BGK) model

: Assuming o1 — 0 — _
c, = very complicated! , | Ao=A1=0.

» The BGK model is an approximation to the Boltzmann equation

Of 1 . . . :
ot C-Vof = —=(f — fs(p, u)) ANOVA expansion of multivariate functions
» Expansion of f in a basis &(() of Hermite polynomials yields » ANOVA expansion of a multivari- g(a) = go + Z gr(ar).

ate function with ¢ = ag, .. ., o, TCP

F(t,¢.x) = a(x, 1) &(C) = g‘z : Alg)z | Azg—iz 5(a) >

In our case g is an error functional of the solution to the BGK+PML

= » Central ingredient: multivariate numerical integration, here implemented
> Constant coefficient, symmetric hyperbolic system with product rules with Gauss-Legendre quadrature, (G,)”
> Linear, some nonlinear terms in S(a): Hagstrom's theory is applicable » From the gr(au7) it is possible to define the Total Sensitivity Index (TSI)
» For weakly compressible flows it recovers isentropic Navier-Stokes eqs of a parameter «;, which measures the combined sensitivity of all terms

that depend on «; [3]. These TSlIs tell us which parameters are most

BGK+PML model important in the ANOVA expansion

» PML for the BGK model proposed by Gao et al. [1] Results of the ANOVA analysis
Oa da Oa
E*"‘l (3—)(1*01 ()‘0""*“’)) +A23_X2 = 5(a), Cubature type «g o1 16, L
4
Ow . al[)_w ot o) w4 da (oot o) a— )\1@ 0. (Gy) 0.1638 0.2474 0.2775 0.9312
ot 0 Ox1 Ox (G3)* 0.1635 0.1916 0.2879 0.9385

_ _ Table 1: TSlIs for the parameters oy, oy, 5 and L, using g(ag, a1, 5, L).
» Shape of damping function o1(x): ( )

1

3
 (x—x N » oy o G L

o1(x) = C( ; ) , C~(At) . 27561 2.7361 3.3077 0.6717 o

25493 2.0772 3.8463 0.5505 o

» We study 5, L, ag, a1, Ao, A1

-

0.4991 0.4749 3.8877 0.4222
0.2551 0.0609 3.9325 0.4133
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Table 2: Four sets of optimal values for | |
the parameters oy, o1, 0 and L, obtained ° 1 7 ’

ce and 4™-order Runge-Kutta in time by minimizing g(aw, a1, 5, L). Figure 3: Contour plot of g(5, L).

» Multivariate numerical integration with sparse grid techniques
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» Explore the influence of initial conditions and boundary conditions

» Coupling the BGK+PML model with the Navier-Stokes equations, solving

(a) Simulation without the PML. (b) Simulation with the PML. the former in the PML and the latter in the physical domain
Figure 2: Density distribution and velocity field at t = 1.00.
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