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Overview

Federated Learning on Riemannian Manifolds, Jiaxiang Li and Shiqian Ma, arXiv
preprint, arXiv:2206.05668, June 12, 2022.

Contributions:
▶ Algorithms for Federated Learning (FL) with nonconvex constraints.
▶ New algorithm: RFedSVRG.
▶ Theoretical results on convergence.

This talk:

I. FL on Riemannian manifolds (RMs), federated kPCA and classical PCA.

II. Optimization on RMs, fundamental ideas and tools.

III. Algorithmic components of RFedSVRG.

IV. Numerical experiments on synthetic and real data.
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I. Introduction to Federated Learning



Federated learning (FL)

▶ Classical FL aims at solving the
optimization problem

min
x∈Rd

f (x)B
1
n

n∑

i=1

fi(x),

where each loss function fi : Rd →R is
stored in a different local client/agent Li
that may have different physical
locations and different hardware.

▶ A central server collects the information
from the different agents and outputs a
consensus that minimizes the sum of the
loss functions fi(x) from all the clients.

Central
server

L1

L2L3

Li

Ln

{ Aim of FL: use computational resources of different agents while maintaining
the data privacy by not sharing data among all the local agents.
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FL on Riemannian manifolds (RMs)

▶ FL problem over a Riemannian manifold

min
x∈M

f (x)B
1
n

n∑

i=1

fi(x), where fi : M→R.

M

x

M

X
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Applications of FL on RMs

▶ Motivating application: federated kPCA problem, namely

min
X∈St(d,r)

f (X)B
1
n

n∑

i=1

fi(X), where fi(X) = −1
2
tr(XTAiX),

where St(d,r) = {X ∈Rd×r |XTX = Ir } is the Stiefel manifold, and Ai = XiX
T
i

is the covariance matrix of the data Xi stored in the ith local agent.
▶ When r = 1, we get the classical PCA, i.e.,

min
x∈Sd−1

f (x)B
1
n

n∑

i=1

fi(x), where fi(x) = −12 xTAix,

where Sd−1 = {x ∈Rd : ∥x∥2 = 1} is the unit (d − 1)-sphere.
▶ Difficulty of existing algorithms: aggregating points over a nonconvex set.
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Contributions of this paper

▶ Riemannian federated SVRG algorithm (RFedSVRG), with convergence rate
O(1/ε2) for obtaining an ε-stationary point.

{ First algorithm for solving FL problems over RMs with convergence
guarantees.

▶ Main novelty: consensus step on the tangent space to the manifold, instead of
the widely used (so-called) “Karcher mean” approach (the Riemannian center
of mass).

▶ Numerical results show that RFedSVRG outperforms the Riemannian
counterparts of two widely used FL algorithms: FedAvg and FedProx.

FSVRG algorithm: [Konečný et al. 2016]
Do not call it “Karcher mean”!: [Karcher 2014]
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II. Optimization on Riemannian manifolds



Riemannian manifold

A manifoldM endowed with a smoothly-varying inner product (called
Riemannian metric g) is called Riemannian manifold.

{ A couple (M, g), i.e., a manifold with a Riemannian metric on it.

▶ Matrix manifold: any manifold that is constructed from R
n×p by taking

either embedded submanifolds or quotient manifolds.
▶ Examples of embedded submanifolds: orthogonal Stiefel manifold, manifold of

symplectic matrices, manifold of fixed-rank matrices, . . .

▶ Example of quotient manifold: the Grassmann manifold.

Manifold optimization: [Edelman et al. 1998, Absil et al. 2008, Boumal 2022], . . .
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The Stiefel manifold and tangent space
▶ Set of matrices with orthonormal columns:

St(d,r) = {X ∈Rd×r : XTX = Ir }.

▶ Tangent space toM at x: set of all tangent vectors toM at x, denoted TxM.

{ For the Stiefel manifold St(d,r),

TXSt(d,r) = {ξ ∈Rd×r : XTξ + ξTX = 0}.

TXSt(d,r)

St(d,r)

ξ

X

Stiefel manifold: [Stiefel, 1935]
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Exponential and logarithm mapping
Given x ∈M and ξ ∈ TxM, the exponential mapping Expx : TxM→M s.t.
Expx(ξ)B γ(1), with γ being the geodesic with γ(0) = x, .γ(0) = ξ .

Corollary/Properties:
Expx(tξ)B γ(t), t ∈ [0,1], and d(x,Expx(ξ)) = ∥ξ∥.

∀x, y ∈M, the mapping Exp−1x (y) ∈ TxM is called the logarithm mapping.

Example. LetM = Sn−1, then the
exponential mapping at x ∈ Sn−1 is

y = Expx(ξ) = xcos(∥ξ∥) + ξ
∥ξ∥ sin(∥ξ∥),

and the Riemannian logarithm is

Logx(y) = ξ = arccos(xTy)
Px y
∥Px y∥

,

where y ≡ γ(1) and Px is the projector
onto

(
span(x)

)⊥, i.e., Px = I − xxT.

γ

y = Expx(ξ)

TxS2

S2

ξx
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Riemannian gradient

{ For any embedded submanifold:
▶ Riemannian gradient: projection onto TXM of the Euclidean gradient

gradf (X) = PTXM(∇f (X)).

{ For the Stiefel manifold, the projection onto the tangent space is

PTXSt(d,r)ξ = Xskew(XTξ) + (I −XXT)ξ.

{ ∇f (X) is the Euclidean gradient of f (X).

{ For example, if f (X) = −1
2 tr(XTAX) (i.e., the local loss function in the

kPCA problem), one has ∇f (X) = −AX.

Symbolic matrix and vector calculus: The Matrix Cookbook, www.matrixcalculus.org, . . .
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Parallel transport
▶ Parallel transport is used to define the Lipschitz condition for the

Riemannian gradients and to prove convergence of the method.
▶ Given a RM (M, g) and two points x,y ∈M, the parallel transport

Px→y : TxM→ TyM is a linear operator that preserves the inner product:

∀ξ,ζ ∈ TxM, ⟨Px→yξ,Px→yζ⟩y = ⟨ξ,ζ⟩x.

x

ξ ζ

γ

Px→yξ

Px→yζ

y

M
TxM

TyM
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III. The RFedSVRG algorithm



Illustration of the algorithm with 3 local agents

Central
server

L1L2

L3

xtxt

xt
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Illustration of the algorithm with 3 local agents

Central
server

L1L2

L3

15 / 26



Illustration of the algorithm with 3 local agents

Central
server

L1L2

L3

x(1)x(2)

x(3)
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Illustration of the algorithm with 3 local agents

L1L2

L3

Central
server
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Illustration of the algorithm with 3 local agents

Central
server

L1L2

L3

xt+1xt+1

xt+1
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Aggregation on the central server/1

How to perform aggregation on the central server (: the consensus step)?

1. Riemannian center of mass of the points (the most common approach)

xt+1← argmin
x

1
k

∑

i∈St
d2(x,x(i)).

Here, St ⊂ [n] is a subset of indices with cardinality k = |St |, x(i) is the data
from each local server, d(·, ·) is the Riemannian distance, and xt+1 is the next
iterate point on the central server.

2. Tangent space consensus step (the one used in this paper)

xt+1← Expxt



1
k

∑

i∈St
Exp−1xt (x

(i))


 ,

where we “lift” each of the data points x(i) to the tangent space TxtM, take
their average on TxtM, and finally map the average back toM.
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Aggregation on the central server/2
Recall the above formula for the tangent space consensus step:

xt+1← Expxt



1
k

∑

i∈St
Exp−1xt (x

(i))


 .

Example with 3 local agents:

St(d,r)

TxtSt(d,r)

xt

x(1)

Exp−1xt (x
(1))

x(2)

Exp−1xt (x
(2))

x(3)

Exp−1xt (x
(3))

1
3

3∑

i=1

Exp−1xt (x
(i))

xt+1

Central
server

L1L2

L3

xt

x(1)xt

x(2)

xt x(3)
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Local gradient update
Which calculations are performed on each client?
▶ Local gradient update

x
(i)
ℓ+1← Exp

x
(i)
ℓ

[
−η(i)

(
gradfi(x

(i)
ℓ )− P

xt→x
(i)
ℓ
(gradfi(xt)− gradf (xt))

)]
,

where η(i) is the stepsize.

▶ The parallel transport is used
to bring the tangent vector

(gradfi (xt)− gradf (xt))
on the same tangent space as
that of gradfi (x

(i)
ℓ ), i.e.,

T
x
(i)
ℓ

M, in order to perform

addition and subtraction.

xt
γ

P
xt→x

(i)
ℓ
(. . .)

x
(i)
ℓ

gradfi(x
(i)
ℓ )

M
TxtM

T
x
(i)
ℓ
M

FSVRG algorithm: [Konečný et al. 2016]
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RFedSVRG algorithm

RFedSVRG: manifold extension of the FSVRG algorithm.

Here, n is the total number of agents, k is the cardinality of St , T is the number of
rounds, and τi in the inner loop denotes the number of local gradient steps.
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Convergence of RFedSVRG

Use standard assumptions for optimization on manifolds:

1. Lipschitz smoothness on manifolds: f : M→R is Lipschitz smooth onM if
∃L ⩾ 0 s.t.

∥gradf (y)− Py→x gradf (x)∥ ⩽ Ld(x,y).

2. The manifold is complete, and there exists a compact set D ⊂M such that all
the iterates generated by the RFedSVRG algorithm are contained in D.

3. The sectional curvature is bounded.

4. The objective function is geodesically convex.

{ Convergence rate results for τi = 1 (Theorem 7), τi > 1 (Theorem 8), and for a
geodesically convex objective function (Theorem 9).
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IV. Numerical experiments



Numerical experiments with synthetic data/1
▶ Compare RFedSVRG to the natural manifold extensions of two existing algorithms

(FedProx and FedAvg). Results for kPCA.
▶ Operations on RMs: Manopt and PyManopt.
▶ Data: data matrix Xi , covariance matrix Ai B XiX

T
i . Test the algorithms with

different number of agents n = {50, 100, 500, 1000}, k = n/10, and (d,r) = (200,5).
▶ Monitored quantities: ∥gradf (xt)∥ and the principal angle between xt and x∗.

FedAvg: [McMahan et al. 2017], FedProx algorithm: [Li et al. 2020], Manopt: [Boumal et al. 2014]
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Numerical experiments with synthetic data/2

Experiments to test the effect of the number of local gradient steps τ .
Here, n = 100, k = 10, (d,r) = (200,5), and τ = {1, 10, 50, 100}.

(My) observation. I am really surprised by such low accuracy (in absolute terms).
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Numerical experiments with real data/1

▶ kPCA with the Iris and wine datasets. Randomly partition the datasets into n = 10
agents, and at each iteration take k = 5 agents.

▶ Numerical iterates are compared to the ground truth, given by the first r principal
directions and the exact optimal loss value f (x∗) computed directly.

Iris
dataset

wine
dataset

Iris and wine datasets: [Forina et al. 1998]
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Numerical experiments with real data/2

▶ kPCA with the MNIST dataset.
▶ The (training) dataset contains 60000 handwritten images of size 28× 28, i.e.,

d = 784. Test RedFSVRG with n = {100, 200}.

n = 100

n = 200

MNIST dataset: [LeCun et al. 1998]
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Conclusions

Contributions:
▶ A new effective algorithm for FL on RMs.
▶ Theoretical results on convergence.
▶ Numerical experiments on some common datasets.

Future research directions:
▶ Lower communication cost.
▶ Better scalability of the algorithm.
▶ Sparse solutions.

謝謝！

{ Download slides: https://www.marcosutti.net/research.html

26 / 26

https://www.marcosutti.net/research.html


V. Bonus material



Hopf–Rinow Theorem

Theorem ([Hopf/Rinow]) Let (M, g) be a (connected) Riemannian manifold.
Then the following conditions are equivalent:
1. Closed and bounded subsets ofM are compact;
2. (M, g) is a complete metric space;
3. (M, g) is geodesically complete, i.e., for any x ∈M, the exponential map

Expx is defined on the entire tangent space TxM.

Any of the above implies that given any two points x, y ∈M, there exists a
length-minimizing geodesic connecting these two points.

Stiefel manifold is compact/complete/geodesically complete{ length-minimizing
geodesics exist.

Riemannian Geometry, Sakai ’92



The Stiefel manifold/2

TXSt(d,r)

St(d,r)

ξ

X

▶ Alternative characterization:

TXSt(n,p) = {XΩ+X⊥K : Ω = −ΩT, K ∈R(n−p)×p}.

▶ Dimension: since dim
(
St(n,p)

)
= dim

(
TXSt(n,p)

)
, the dimension of the

Stiefel manifold is

dim(St(n,p)) = dim(Sskew) + dim(R(n−p)×p) = np − 1
2p(p+1).


