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Overview

Federated Learning on Riemannian Manifolds, Jiaxiang Li and Shiqian Ma, arXiv
preprint, arXiv:2206.05668, June 12, 2022.

Contributions:
» Algorithms for Federated Learning (FL) with nonconvex constraints.
> New algorithm: RFedSVRG.

» Theoretical results on convergence.

This talk:
I. FL on Riemannian manifolds (RMs), federated kPCA and classical PCA.
II. Optimization on RMs, fundamental ideas and tools.
III. Algorithmic components of RFedSVRG.

IV. Numerical experiments on synthetic and real data.
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https://arxiv.org/pdf/2206.05668.pdf

L. Introduction to Federated Learning



Federated learning (FL)

> Classical FL aims at solving the . ‘
optimization problem y

n
min f(x)i= . )_fi(x), o ” o
=1
° % Central L/
where each loss function f;: RY - Ris . server
stored in a different local client/agent L; .
that may have different physical . ‘//‘ ’\
locations and different hardware. .

> A collects the information ‘ ‘
from the different agents and outputs a

that minimizes the sum of the
loss functions f;(x) from all the clients.

~> Aim of FL: use computational resources of different agents while maintaining
the data privacy by not sharing data among all the local agents.
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FL on Riemannian manifolds (RMs)

» FL problem over a Riemannian manifold

mlnf Zﬁ , where fi: 1 > R.

=@
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Applications of FL on RMs

> Motivating application: federated kPCA problem, namely

_ 1 ¢ 1
min f(X) =~ Zl fi(X),  where fi(X) = — tr(X"A;X),
i=
where St(d, r) = {X € R¥"|XTX = I,} is the Stiefel manifold, and A; = XinT
is the covariance matrix of the data X; stored in the ith local agent.
» When r = 1, we get the classical PCA, i.e.,

1
min f(x Zf, , where fi(x)= ) xTA;x,

where S41 = {x e R?: ||x||, = 1} is the unit (d — 1)-sphere.

» Difficulty of existing algorithms: aggregating points over a nonconvex set.
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Contributions of this paper

> Riemannian federated SVRG algorithm (RFedSVRG), with convergence rate
O(1/&?) for obtaining an &-stationary point.

~ First algorithm for solving FL problems over RMs with convergence
guarantees.

» Main novelty: consensus step on the tangent space to the manifold, instead of
the widely used (so-called) “Karcher mean” approach (the Riemannian center
of mass).

» Numerical results show that RFedSVRG outperforms the Riemannian
counterparts of two widely used FL algorithms: FedAvg and FedProx.

FSVRG algorithm: [Koneény et al. 2016]
Do not call it “Karcher mean”!: [Karcher 2014]
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II. Optimization on Riemannian manifolds



endowed with a (called
) is called

A couple , 1.e., a manifold with a Riemannian metric on it.

any manifold that is constructed from R"*? by taking
either embedded submanifolds or quotient manifolds.

» Examples of embedded submanifolds: orthogonal Stiefel manifold, manifold of
symplectic matrices, manifold of fixed-rank matrices, ...

» Example of quotient manifold: the Grassmann manifold.

Manifold optimization: [Edelman et al. 1998, Absil et al. 2008, Boumal 2022], ...
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The Stiefel manifold and tangent space
» Set of matrices with orthonormal columns:

St(d,r) = {X e R™": X'X =1,).

> Tangent space to M at x: set of all tangent vectors to M at x, denoted T, M.

~> For the Stiefel manifold St(d, r),

TySt(d,r) = (£ e R : XTE+&ETX = 0).

V

Stiefel manifold: [Stiefel, 1935]
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Given x € M and & € T, M, the Exp,: TM— Ms.t.
Exp, (&) := (1), with y being the geodesic with y(0) = x, y(0) = &.

Exp,(t&) :==y(t), te[0,1], and d(x,Exp,(&)) =&l
Vx, y € M, the mapping Exp;!(y) € T, M is called the

Let M = S"1 then the
exponential mapping at x € S n=ljg

v = Exp,(&) = xcos(|&|l) + 7= sin([|€])),

IIEII

and the Riemannian logarithm is

Pyy
Lo =& = arccos xy) -2
8x(¥) (x') %]

where y = (1) and P, is the projector

onto (span(x))l, ie,Py=1—xx".
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Riemannian gradient

~> For any embedded submanifold:

» Riemannian gradient: projection onto Ty M of the Euclidean gradient

grad f(X) = Pry m (VS (X)).

~> For the Stiefel manifold, the projection onto the tangent space is

Prosian & = Xskew(XTE) + (I - XXT)E.

~> Vf(X) is the Euclidean gradient of f(X).

~> For example, if f(X) = —% tr(XTAX) (i.e., the local loss function in the
kPCA problem), one has Vf(X) = —AX.

Symbolic matrix and vector calculus: The Matrix Cookbook, www.matrixcalculus.org, ...
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is used to define the Lipschitz condition for the
Riemannian gradients and to prove convergence of the method.

Given a RM (M, g) and two points x,y € M, the
P y: TM—>T,Misa

Vé;C S TxMr <Px4>y£; an})C)y = <£; C>x
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III. The RFedSVRG algorithm



[llustration of the algorithm with 3 local agents
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[lustration of the algorithm with 3 local agents
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[llustration of the algorithm with 3 local agents
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[lustration of the algorithm with 3 local agents
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[llustration of the algorithm with 3 local agents
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How to perform (: the )?
1. Riemannian center of mass of the points (the most common approach)
1 ‘
Xs41 < argmin — Zdz(x, x1),
x k!
1€S;

Here, S; C [1] is a subset of indices with cardinality k = |S,|, x/) is the data
from each local server, d(:, ) is the Riemannian distance, and x;,; is the next
iterate point on the central server.

2. Tangent space consensus step (the one used in this paper)

1 B .
Xty1 < Epr, E ZEXP,\‘,I (x(l)) ’

ieS;

where we “lift” each of the data points x() to the tangent space T,, M, take
their average on Ty, M, and finally map the average back to M.
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Aggregation on the central server/2

Recall the above formula for the tangent space consensus step:

1 I
X1 < Expy, [E ZExpxtl(x(’))].

i€eS;

Example with 3 local agents:

3
3 Bxpl(x)
i=1
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Local gradient update

Which calculations are performed on each client?

» Local gradient update
xé’ll — EXng‘) [—U(i) (gradfi(xé’)) - th_)xém (grad fi(x;) - gfadf(xr)))] ,

where 1!) is the stepsize.

> The parallel transport is used
to bring the tangent vector

(grad f;(x;) —grad f(x¢))

on the same tangent space as

that of gradf,-(x(;)), ie.,
, in order to perform

addition and subtraction.

FSVRG algorithm: [Kone¢ny et al. 2016]
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RFedSVRG algorithm

RFedSVRG: manifold extension of the FSVRG algorithm.

Algorithm 1: Riemannian FedSVRG Algorithm (RFedSVRG)

input :n, k, T, {n®M}, {1;}

output : Option 1: Z = z7; or Option 2: Z is uniformly sampled from {x1, ..., zr}
1 fort=0,..,7—1do
Uniformly sample S; C [n] with | S| = k;
for each agent i in Sy do

Receive m( ) _ a:t from the central server;

for . =0,. —1do
| Take the local gradient step [ESITR Exp, (\[—:ﬂ”(gradﬁ(x}")—1{"4"3’.«:‘;;: d fi(x,)
end :

Send () (obtained by one of the following options) to the central server
« Option 1: £ = 2;

+ Option 2: () is uniformly sampled from {xil) . a:TL)}

end
The central server aggregates the points by the tangent space mean

end

Here, n is the total number of agents, k is the cardinality of S;, T is the number of
rounds, and 7; in the inner loop denotes the number of local gradient steps.




Use standard assumptions for optimization on manifolds:

on manifolds: f: M — R is Lipschitz smooth on M if
dL > 0st.

llgrad f () — Py_x grad f (x)l| < Ld(x, ).

The manifold is , and there exists a compact set D C M such that all
the iterates generated by the RFedSVRG algorithm are contained in D.

The is

The objective function is

for 7; = 1 (Theorem 7), 7; > 1 (Theorem 8), and for a
geodesically convex objective function (Theorem 9).
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IV. Numerical experiments



to the natural manifold extensions of two existing algorithms
(FedProx and FedAvg).

Operations on RMs: and

: data matrix Xj, covariance matrix A; := XiX;r. Test the algorithms with
different number of agents n = {50, 100, 500, 1000}, k = n/10, and (d, r) = (200, 5).

: ||grad f (x¢)|| and the principal angle between x; and x*.

@ (n, 50,5)  (b) (n,k) = (100,10) (c) (n, (500,50) (d) (n, k) = (1000, 100)

FedAvg: [McMahan et al. 2017], FedProx algorithm: [Li et al. 2020], Manopt: [Boumal et al. 2014]
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Experiments to test the effect of the
Here, n =100, k = 10, (d,r) = (200,5), and = = {1, 10, 50, 100}.

I am really surprised by such low accuracy (in absolute terms).
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. Randomly partition the datasets into n = 10
agents, and at each iteration take k = 5 agents.

Numerical iterates are compared to the ground truth, given by the first r principal
directions and the exact optimal loss value f(x*) computed directly.

Iris and wine datasets: [Forina et al. 1998]
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The (training) dataset contains 60 000 handwritten images of size 28 x 28, i.e.,
d = 784. Test RedFSVRG with n = {100, 200}.

a0 G0 a0 1000

Round of communication

200 400 60 s00 1000 1200 1400 B a0 w0 ado0 0 1200 1400
Round of communication Round of cor

MNIST dataset: [LeCun et al. 1998]



Conclusions

Contributions:
> A new effective algorithm for FL on RMs.
> Theoretical results on convergence.

> Numerical experiments on some common datasets.

Future research directions:
» Lower communication cost.
> Better scalability of the algorithm.

> Sparse solutions.

A |
~> Download slides: https://www.marcosutti.net/research.html
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https://www.marcosutti.net/research.html

V. Bonus material



Hopf-Rinow Theorem

Let (M, g) be a (connected) Riemannian manifold. )
Then the following conditions are equivalent:
Closed and bounded subsets of M are :
(M,g)isa metric space;
(M, g)is , 1.e., for any x € M, the exponential map
Exp, is defined on the entire tangent space T\ M.

\

Any of the above implies that given any two points x, y € M, there exists a
geodesic connecting these two points.

Stiefel manifold is compact/complete/geodesically complete ~>
geodesics exist.

Riemannian Geometry, Sakai *92



The Stiefel manifold/2

» Alternative characterization:
TxSt(n,p) = (XQ + X, K: Q =-QT, K e R"P>P},
» Dimension: since dim(St(n,p)) = dim(TXSt(n,p)), the dimension of the
Stiefel manifold is

dim(St(n, p)) = dim(Syyew) + dim(R"PPP) = np - Lp(p +1).



