Computing geodesics on the Stiefel manifold

Marco Sutti
Postdoctoral fellow at NCTS

Me $Ð A$ Seminar
October 27, 2022

Overview

- Many applications in diverse fields (such as optimization, image and signal processing, statistics, ...) deal with data belonging to the Stiefel manifold

$$
\operatorname{St}(n, p)=\left\{X \in \mathbb{R}^{n \times p}: X^{\top} X=I_{p}\right\} .
$$

$>$ Evaluation of the distance between two points on $\operatorname{St}(n, p)$.
\Rightarrow No closed-form solution is known for St (n, p) !

This talk:

I. Motivating example.
II. Geometry of the Stiefel manifold.
III. Computational framework based on the shooting method.
IV. Some example applications.
I. Motivation

A motivating example: imaging/1

- Need to deal with transformations that are more complicated than similarity transformations (translation/rotation/scaling).
- E.g., distortion, or imaging the same scene from different viewing angles.
- Example: two shapes from the MPEG-7 dataset, with a certain degree of similarity.

\leadsto How "far" are they from each other?

A motivating example: imaging/2

- One usually goes beyond the similarity group to define shape equivalences.
- Geodesics on $\operatorname{St}(n, 2)$, with shapes from the MPEG-7 dataset.

MPEG-7: [Bober 2001], affine-standardized shapes: [Bryner 2017]

II. The Stiefel manifold

The Stiefel manifold and its tangent space

- Set of matrices with orthonormal columns:

$$
\operatorname{St}(n, p)=\left\{X \in \mathbb{R}^{n \times p}: X^{\top} X=I_{p}\right\}
$$

- Tangent space to \mathcal{M} at x : set of all tangent vectors to \mathcal{M} at x, denoted $\mathrm{T}_{x} \mathcal{M}$. For St (n, p),

$$
\mathrm{T}_{X} \operatorname{St}(n, p)=\left\{\xi \in \mathbb{R}^{n \times p}: X^{\top} \xi+\xi^{\top} X=0\right\}
$$

$>$ Alternative characterization of $\mathrm{T}_{X} \operatorname{St}(n, p)$:

$$
\mathrm{T}_{X} \operatorname{St}(n, p)=\left\{X \Omega+X_{\perp} K: \Omega=-\Omega^{\top}, K \in \mathbb{R}^{(n-p) \times p}\right\}
$$

where $\operatorname{span}\left(X_{\perp}\right)=(\operatorname{span}(X))^{\perp}$.
Dimension: since $\operatorname{dim}(\operatorname{St}(n, p))=\operatorname{dim}\left(T_{X} \operatorname{St}(n, p)\right)$, we have

$$
\operatorname{dim}(\operatorname{St}(n, p))=\operatorname{dim}\left(\mathcal{S}_{\text {skew }}\right)+\operatorname{dim}\left(\mathbb{R}^{(n-p) \times p}\right)=n p-\frac{1}{2} p(p+1)
$$

Riemannian manifold

A manifold \mathcal{M} endowed with a smoothly-varying inner product (called Riemannian metric g) is called Riemannian manifold.
\sim A couple (\mathcal{M}, g), i.e., a manifold with a Riemannian metric on it.
$~$ For the Stiefel manifold:

- Embedded metric inherited by $\mathrm{T}_{X} \operatorname{St}(n, p)$ from the embedding space $\mathbb{R}^{n \times p}$

$$
\langle\xi, \eta\rangle=\operatorname{Tr}\left(\xi^{\top} \eta\right), \quad \xi, \eta \in \mathrm{T}_{X} \operatorname{St}(\eta, p) .
$$

- Canonical metric by seeing $\operatorname{St}(n, p)$ as a quotient of the orthogonal group $\mathrm{O}(n): \mathrm{St}(n, p)=\mathrm{O}(n) / \mathrm{O}(n-p)$

$$
\langle\xi, \eta\rangle_{c}=\operatorname{Tr}\left(\xi^{\top}\left(I-\frac{1}{2} X X^{\top}\right) \eta\right), \quad \xi, \eta \in \mathrm{T}_{X} \operatorname{St}(n, p) .
$$

Metrics and geodesics on St (n, p)

$$
\begin{array}{cc}
\langle\xi, \eta\rangle=\operatorname{Tr}\left(\xi^{\top} \eta\right) . & \langle\xi, \eta\rangle_{\mathrm{c}}=\operatorname{Tr}\left(\xi^{\top}\left(I-\frac{1}{2} X X^{\top}\right) \eta\right) . \\
\text { Length of a tangent vector } \xi=X \Omega+X_{\perp} K: \\
\|\xi\|_{\mathrm{F}}=\sqrt{\langle\xi, \xi\rangle}=\sqrt{\|\Omega\|_{\mathrm{F}}^{2}+\|K\|_{\mathrm{F}}^{2}} . & \|\xi\|_{\mathrm{c}}=\sqrt{\langle\xi, \xi\rangle_{\mathrm{c}}}=\sqrt{\frac{1}{2}\|\Omega\|_{\mathrm{F}}^{2}+\|K\|_{\mathrm{F}}^{2}} .
\end{array}
$$

Embedded metric:

Canonical metric:

$$
\langle\xi, \eta\rangle_{c}=\operatorname{Tr}\left(\xi^{\top}\left(I-\frac{1}{2} X X^{\top}\right) \eta\right) .
$$

- Closed-form solution (with the canonical metric) for a geodesic $Z(t)$ that realizes ξ with base point X :

$$
Z(t)=\left[\begin{array}{ll}
X & X_{\perp}
\end{array}\right] \exp \left(\left[\begin{array}{cc}
X^{\top} \xi & -\left(X_{\perp}^{\top} \xi\right)^{\top} \\
X_{\perp}^{\top} \xi & O
\end{array}\right] t\right)\left[\begin{array}{l}
I_{p} \\
O
\end{array}\right] .
$$

Riemannian exponential and logarithm

$>$ Given $x \in \mathcal{M}$ and $\xi \in T_{x} \mathcal{M}$, the exponential mapping $\operatorname{Exp}_{x}: T_{x} \mathcal{M} \rightarrow \mathcal{M}$ s.t. $\operatorname{Exp}_{x}(\xi):=\gamma(1)$, with γ being the geodesic with $\gamma(0)=x, \dot{\gamma}(0)=\xi$.
$>$ Corollary: $\operatorname{Exp}_{x}(t \xi):=\gamma(t)$, for $t \in[0,1]$.
$\nabla \forall x, y \in \mathcal{M}$, the mapping $\operatorname{Exp}_{x}^{-1}(y) \in T_{x} \mathcal{M}$ is called logarithm mapping.
Example. Let $\mathcal{M}=\mathcal{S}^{n-1}$, then the exponential mapping at $x \in \mathcal{S}^{n-1}$ is

$$
y=\operatorname{Exp}_{x}(\xi)=x \cos (\|\xi\|)+\frac{\xi}{\|\xi\|} \sin (\|\xi\|),
$$

and the Riemannian logarithm is

$$
\log _{x}(y)=\xi=\arccos \left(x^{\top} y\right) \frac{\mathbf{P}_{x} y}{\left\|\mathbb{P}_{x} y\right\|},
$$

where $y \equiv \gamma(1)$ and P_{x} is the projector onto $(\operatorname{span}(x))^{\perp}$, i.e, $\mathrm{P}_{x}=I-x x^{\top}$.

Riemannian distance on $\operatorname{St}(n, p)$

- Property: Given $X, Y \in \operatorname{St}(n, p)$, s.t. $\operatorname{Exp}_{X}(\xi)=Y$, the Riemannian distance $d(X, Y)$ equals the length of $\xi \equiv \dot{Z}(0) \in \mathrm{T}_{X} \operatorname{St}(n, p)$:

$$
d(X, Y)=\|\xi\|_{c}=\sqrt{\langle\xi, \xi\rangle_{c}} .
$$

Equivalent to: Compute the length of the Riemannian logarithm of Y with base point X, i.e.,

$$
\log _{X}(Y)=\xi .
$$

- No closed-form solution is known for $\operatorname{St}(n, p)$!
\leadsto How do we compute $d(X, Y)$ in practice / numerically?

III. The shooting method

Single shooting for BVPs

\triangleright Boundary value problem (BVP): Find $w(x):[a, b] \rightarrow \mathbb{R}$ that satisfies

$$
w^{\prime \prime}=f\left(x, w, w^{\prime}\right), \quad \text { with BCs } \quad\left\{\begin{array}{l}
w(a)=\alpha \\
w(b)=\beta
\end{array}\right.
$$

$>$ Recast it as an initial value problem (IVP): Find $w(x)$ that satisfies

$$
w^{\prime \prime}=f\left(x, w, w^{\prime}\right), \quad \text { with ICs } \quad\left\{\begin{array}{l}
w(a)=\alpha \\
w^{\prime}(a)=s
\end{array}\right.
$$

\leadsto In general, this has a unique solution $w(x) \equiv w(x ; s)$ which depends on s (Picard-Lindelöf theorem). Analytical or numerical solution (e.g., Runge-Kutta).
\leadsto Single shooting method for BVPs:
\Rightarrow Define $F(s)=w(b ; s)-\beta$.
$>$ Find \bar{s} s.t. $F(\bar{s})=0$. Usually, with Newton's method.

Single shooting for BVPs: example

Stiefel geodesics via single shooting/1

- Problem statement:

Find $\xi \equiv \dot{Z}(0) \in \mathrm{T}_{X} \operatorname{St}(n, p)$ that satisfies the BVP

$$
\ddot{Z}=-\dot{Z} \dot{Z}^{\top} Z-Z\left(\left(Z^{\top} \dot{Z}\right)^{2}+\dot{Z}^{\top} \dot{Z}\right)
$$

$$
\text { with } \mathrm{BCs}\left\{\begin{array}{l}
Z(0)=X \\
Z(1)=Y
\end{array}\right.
$$

- Recall: we have the explicit solution: $Z(t)=\left[\begin{array}{ll}X & X_{\perp}\end{array}\right] \exp \left(\left[\begin{array}{cc}X^{\top} \xi & -\left(X_{\perp}^{\top} \xi\right)^{\top} \\ X_{\perp}^{\top} \xi & O\end{array}\right] t\right)\left[\begin{array}{c}I_{p} \\ O\end{array}\right]$. \leadsto Single shooting for Stiefel geodesics:
- Define $F(\xi)=Z_{(t=1, \xi)}-Y$.
\triangleright Find ξ s.t. $F(\xi)=0$ with Newton's method.

Stiefel geodesics via single shooting/2

- Numerical experiment on $\operatorname{St}(15,4)$.
- Monitored quantity: norm of the residual $\delta \xi^{(k)}$ of $F\left(\xi^{(k)}\right)=Z_{\left(t=1, \xi^{(k)}\right)}-Y$.
\oplus Quadratic convergence.
- A good initial guess $\xi^{(0)}$ is needed.
- Local problem (X and Y "close") can be solved very well by single shooting.
- A non-unitary step size (e.g., Armijo condition) might be used to make the shooting more robust.

MATLAB code available: github.com/MarcoSutti/LFMS_Stiefel

IV. Applications

Model order reduction/ 1

- Model order reduction (MOR) for dynamical systems parametrized according to $p=\left[p_{1}, \ldots, p_{d}\right]^{\top}$.
$>$ For each parameter p_{i} in a set $\left\{p_{1}, p_{2}, \ldots, p_{K}\right\}$, use proper orthogonal decomposition (POD) to derive a reduced-order basis $V_{i} \in \operatorname{St}(n, r), r \ll n$.

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \dot { x } (t ; p) = A (p) x (t ; p) + B (p) u (t) , } \\
{ y (t ; p) = C (p) x (t ; p) , }
\end{array} \quad \left\{\begin{array}{l}
\dot{x}_{r}(t ; p)=A_{r}(p) x_{r}(t ; p)+B_{r}(p) u(t), \\
y_{r}(t ; p)=C_{r}(p) x_{r}(t ; p),
\end{array}\right.\right. \\
& x(t ; p) \in \mathbb{R}^{n}, u(t) \in \mathbb{R}^{m}, y(t) \in \mathbb{R}^{q},
\end{aligned} \quad \begin{aligned}
& \text { reduction } \\
& A(p) \in \mathbb{R}_{r}^{n \times n}, B(p) \in \mathbb{R}^{n \times m}, C(p) \in \mathbb{R}^{q \times n} .
\end{aligned} \begin{aligned}
& x_{r}=V^{\top} A V, B_{r}=V^{\top} B,
\end{aligned}, C V, V \equiv V(p) \in \operatorname{St}(n, r), r \ll n ., ~ l
$$

\sim This gives a set of local basis matrices $\left\{V_{1}, V_{2}, \ldots, V_{K}\right\}$.

Model order reduction/2

- Given a new parameter value \hat{p}, a basis \widehat{V} can be obtained by interpolating the local basis matrices on a tangent space to $\operatorname{St}(n, r)$.
\Rightarrow For interpolation on $\mathrm{T}_{V_{3}} \mathrm{St}(n, r)$, the distance is needed.

Interpolation in the tangent space to a manifold: [Hüper/Silva Leite 2007, Amsallem 2010, Amsallem/Farhat 2011]

Model order reduction/3

Transient heat equation on a square domain, with 4 disjoint discs.
\downarrow FEM discretization with $n=1169$. Simulation for $t \in[0,500]$, with $\Delta t=0.1$.

- 500 snapshot POD over 5000 timeframes, with a reduced model of size $r=4$.
- Relative error between $y(\cdot ; \hat{p})$ and $y_{r}(; \hat{p})$ is about 1%.

Details for these experiments: [S. 2020]

Riemannian center of mass

- Notion of mean on a Riemannian manifold \mathcal{M}, defined by the optimization problem

$$
\mu=\underset{p \in \mathcal{M}}{\operatorname{argmin}} \frac{1}{2 N} \sum_{i=1}^{N} d^{2}\left(p, q_{i}\right),
$$

where $d\left(p, q_{i}\right)$ is the Riemannian distance on \mathcal{M}, and $q_{i} \in \mathcal{M}$, for $i=1, \ldots, N$.
\downarrow For $\operatorname{St}(n, p)$, the distances $d\left(p, q_{i}\right)$ are computed with our algorithm.
!. Caveat: On manifolds of positive curvature the Riemannian center of mass is general not unique. But if the data points are close enough, then uniqueness is guaranteed.
$\downarrow \operatorname{St}(n, p)$ has also positive curvature (an upper bound on its sectional curvature is given by $5 / 4$).

[^0]
Riemannian center of mass of a shape set

- "device7" shape set from the MPEG-7 dataset.
- Riemannian center of mass:

MPEG-7: [Bober 2001], affine-standardized shapes: [Bryner 2017]

Riemannian center of mass for summary statistics $/ 1$

- Consider the space of univariate probability density functions (PDFs) on the unit interval [0, 1], i.e.,

$$
\mathcal{P}=\left\{g:[0,1] \rightarrow \mathbb{R}_{\geqslant 0}: \int_{0}^{1} g(x) \mathrm{d} x=1\right\}
$$

> By introducing the half-density representation of the elements of \mathcal{P}, $q(t)=\sqrt{g(t)}$, the set \mathcal{P} can be identified with the positive orthant of the Hilbert sphere \mathcal{S}^{∞}

$$
\mathcal{Q}=\left\{q:[0,1] \rightarrow \mathbb{R}_{\geqslant 0}:\|q\|=1\right\} .
$$

- The identification of \mathcal{P} with $\mathcal{Q} \subset \mathcal{S}^{\infty}$ allows us to attach a spherical structure to \mathcal{P}, so that the unit n-sphere $\mathcal{S}^{n}=\left\{x \in \mathbb{R}^{n+1}:\|x\|=1\right\}$, for some large n, can be used to approximate \mathcal{S}^{∞} in practical situations.

Riemannian center of mass for summary statistics/2

- Example: Riemannian center of mass of the approximate half-density representations of 3 PDFs.
- Sampled at $n=100$ points, which makes them elements of $\operatorname{St}(100,1) \equiv \mathcal{S}^{99}$.

Functional and shape data analysis: [Srivastava/Klassen 2016]

Conclusions

This talk:

- Computing the Riemannian distance can be a hard problem.
- Computational framework: shooting method.
- Applications in imaging, model order reduction, and summary statistics.

Outlook:

$>$ Recent advances in numerical algorithms: [Zimmermann 2017, Zimmermann/Hüper 2022].

- Other novel applications on $\operatorname{St}(n, p)$ for: EEG data [Yamamoto et al. 2021], brain network harmonics [Chen et al. 2021], clustering problems [Huang et al. 2022], federated learning [Li/Ma 2022] ...
- Next talk (2022.11.10): Riemannian BFGS method and its application to image segmentation on the Stiefel manifold [Ring/Wirth 2012].
\leadsto Download slides: marcosutti.net/research.html\#talks
V. Bonus material

Geodesics

- Generalization of straight lines to manifolds.
\downarrow Locally curves of shortest length, but globally they may not be.

- Hopf-Rinow theorem guarantees the existence of a length-minimizing geodesic connecting any two given points.

Affine standardized shapes $/ 1$

- Let $\mathbb{R}^{n \times p}$ space of point sets of size n in \mathbb{R}^{p}, i.e., $X \in\left[x_{1}, \ldots, x_{n}\right]^{\top} \in \mathbb{R}^{n \times p}$, and let the affine group $G_{a}=G L(p) \ltimes \mathbb{R}^{p}$.
- The action of G_{a} on $\mathbb{R}^{n \times p}$ defines the orbits

$$
[X]=\{X A+B \mid A \in G L(p), B=\mathbf{1} \operatorname{diag}(b)\},
$$

where $G L(p)$ space of invertible p-by- p matrices, $b \in \mathbb{R}^{p}$, and $\mathbf{1}=$ ones (n, p).

- Centroid and covariance matrix:

$$
C_{X}:=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \quad \Sigma_{X}:=\left(X-1 \operatorname{diag}\left(C_{X}\right)\right)^{\top}\left(X-1 \operatorname{diag}\left(C_{X}\right)\right) .
$$

$\vee \forall X$ full rank, \exists affine-standardized point set $X_{0} \in[X]$ that satisfies both $C_{X}=0$ and $\Sigma_{X}=I$. That is, $X_{0} \in \operatorname{St}(n, p)$.

Affine standardized shapes/2

$\nabla \forall$ affine-standardized point sets $X_{0}^{(1)}, X_{0}^{(2)} \in[X]$, we have $X_{0}^{(2)} \sim X_{0}^{(2)}$ up to an orthogonal transformation in $\mathrm{O}(p)$. I.e., $X_{0}^{(2)}=X_{0}^{(1)} Q$ for some $Q \in \mathrm{O}(p)$.

- Space of all affine-standardized point sets (affine-invariant "preshape" space)

$$
\begin{aligned}
\mathcal{A}_{n, p}= & \left\{X \in \mathbb{R}^{n \times p} \mid C_{X}=0, \Sigma_{X}=I\right\} . \\
& \leadsto \text { It is just } \operatorname{St}(n, p)!
\end{aligned}
$$

- The examples shown at the beginning of this talk focus on the special case of $p=2$ for illustration purposes.
\triangleright Affine-invariant shape space is the quotient $\mathcal{A}_{n, p} / \mathrm{O}(p)$.
An analysis on $\operatorname{St}(n, p)$ alone is equivalent to an analysis on $\mathcal{A}_{n, p}$. So it is not an affine-invariant shape analysis.

Affine-standardized shapes: [Bryner 2017]

Theorem ([Hopf/Rinow]) Let (\mathcal{M}, g) be a (connected) Riemannian manifold. Then the following conditions are equivalent:

1. Closed and bounded subsets of \mathcal{M} are compact;
2. (\mathcal{M}, g) is a complete metric space;
3. (\mathcal{M}, g) is geodesically complete, i.e., for any $x \in \mathcal{M}$, the exponential map Exp_{x} is defined on the entire tangent space $\mathrm{T}_{x} \mathcal{M}$.

Any of the above implies that given any two points $x, y \in \mathcal{M}$, there exists a length-minimizing geodesic connecting these two points.

The Stiefel manifold is compact/complete/geodesically complete.
\leadsto Length-minimizing geodesics exist.

The orthogonal group as a special case of $\operatorname{St}(n, p)$

- If $p=n$, then the Stiefel manifold reduces to the orthogonal group

$$
\mathrm{O}(n)=\left\{X \in \mathbb{R}^{n \times n}: X^{\top} X=I_{n}\right\},
$$

and the tangent space at X is given by

$$
\mathrm{T}_{X} \mathrm{O}(n)=\left\{X \Omega: \Omega^{\top}=-\Omega\right\}=X \mathcal{S}_{\text {skew }}(n) .
$$

- Furthermore, if $X=I_{n}$, we have $\mathrm{T}_{I_{n}} \mathrm{O}(n)=\mathcal{S}_{\text {skew }}(n)$. This means that the tangent space to $\mathrm{O}(n)$ at the identity matrix I_{n} is the set of skew-symmetric n-by- n matrices $\mathcal{S}_{\text {skew }}(n)$.
- In the language of Lie groups, we say that $\mathcal{S}_{\text {skew }}(n)$ is the Lie algebra of the Lie group $\mathrm{O}(n)$.

Geodesics via multiple shooting

Global problem (X and Y "far")
\downarrow Based on subdivision.

- Enforce continuity conditions of Z and \dot{Z} at the interfaces between subintervals.

Geodesics via multiple shooting

System of nonlinear equations:

$$
F(\Sigma)=\left[\begin{array}{c}
Z_{1}^{(1)}-\Sigma_{1}^{(2)} \\
Z_{2}^{(1)}-\Sigma_{2}^{(2)} \\
Z_{1}^{(2)}-\Sigma_{1}^{(3)} \\
Z_{2}^{(2)}-\Sigma_{2}^{(3)} \\
\vdots \\
r_{1}=\Sigma_{1}^{(1)}-Y_{0} \\
r_{2}=\Sigma_{1}^{(m)}-Y_{1}
\end{array}\right]=0, \text { linearize } \rightarrow \underbrace{\left[\begin{array}{ccccc}
G^{(1)} & -I & O & & O \\
O & G^{(2)} & -I & \ddots & \\
& \ddots & \ddots & \ddots & O \\
O & & \ddots & G^{(m-1)} & -I \\
C & O & & O & D
\end{array}\right]}_{=: D F(\Sigma)} \delta \delta \Sigma=-F(\Sigma) .
$$

\oplus Fast convergence to ξ.

- A very good initial guess $\xi^{(0)}$ is still needed.

[^0]: Riemannian center of mass: [Cartan 1920s, Calabi 1958, Grove/Karcher 1973] Uniqueness of the Riemannian center of mass: [Afsari/Tron/Vidal 2013]
 Upper bound on the sectional curvature of $\operatorname{St}(n, p)$: [Rentmeesters 2013]

