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Overview

» Many applications in diverse fields TxSt(rp)
(such as optimization, image and
signal processing, statistics, ...)
deal with data belonging to the
Stiefel manifold

St(n,p) = (X e R"P: XX =1,}.

» Evaluation of the distance between two points on St(#, p).

This talk:
I. Motivating example.
II. Geometry of the Stiefel manifold.
III. Computational framework based on the shooting method.

IV. Some example applications.

2/25



I. Motivation



A motivating example: imaging/1
> Need to deal with transformations that are more complicated than similarity
transformations (translation/rotation/scaling).
> E.g., distortion, or imaging the same scene from different viewing angles.

> Example: two shapes from the MPEG-7 dataset, with a certain degree of
similarity.

~> How “far” are they from each other?

MPEG-7: [Bober 2001], affine-standardized shapes: [Bryner 2017]
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A motivating example: imaging/2

> One usually goes beyond the similarity group to define shape equivalences.

> Geodesics on St(n, 2), with shapes from the MPEG-7 dataset.
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MPEG-7: [Bober 2001], affine-standardized shapes: [Bryner 2017]
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I1. The Stiefel manifold



The Stiefel manifold and its tangent space

TxSt(n,p)

» Set of matrices with orthonormal
columns:

St(n,p) = {X e R™P: XX =1,).

> Tangent space to M at x: set of all tangent vectors to M at x, denoted T, M.
For St(n, p),

TxSt(n,p)={E € R™P: XTE+ETX =0).
» Alternative characterization of TxSt(n, p):
TxSt(n,p) = {XQ+ X, K: Q=-Q7, K e R"P>p),
where span(X ) = (span(X))l.

» Dimension: since dim(St(n,p)) = dim(TXSt(n,p)), we have

dim(St(n, p)) = dim(Sgew) + dim(R"P>P) = np — Sp(p +1).

Stiefel manifold: [Stiefel, 1935]
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A endowed with a (called
) is called

A couple , 1.e., a manifold with a Riemannian metric on it.

~> For the Stiefel manifold:

» Embedded metric inherited by TxSt(n, p) from the embedding space IR"*P

(Eny=Tr(E™y), & neTxSt(np).

» Canonical metric by seeing St(n, p) as a quotient of the orthogonal group
O(n): St(n,p) = O(n)/O(n - p)

(&mye =Te(ET(I-5XXT)ny), & neTxSt(np).
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Metrics and geodesics on St(n, p)

Embedded metric: Canonical metric:

(&) =Tr(ETn). (€ =Tr(ET(I - 1XXT) ).

Length of a tangent vector £ = XQ + X K:

lIElle = V(& &) = IQIIE + IKIIZ. €1l = V(& E)e = S IQUIE + K.

TxSt(n,p)

» Closed-form solution (with the canonical
metric) for a geodesic Z(t) that realizes &

with base point X:

XTE —(XIé)T]t)[Ip]'

Z(t) =X Xﬂexp([xT : o 2
1
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Given x € M and & € T, M, the Exp,: M — M st
Exp, (&) := (1), with y being the geodesic with y(0) = x, (0) = &.

Exp,(t&) == p(t), for t € [0,1].
Vx, y € M, the mapping Exp; ! () € T, M is called

Let M = 8" 1 then the
exponential mapping at x € S"~! is

v = Exp, (&) = xcos(||]l) + 7= sin(lI£]]),

||<§|I

and the Riemannian logarithm is

Pyy
P I’

where y = (1) and P, is the projector

Log,(v)=¢& = arccos(x"p)

onto (span(x)) ,ie,Py=T—xxT.
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Riemannian distance on St(n, p)

> Property: Given X, Y € St(n, p), s.t. Expx (&) = Y, the Riemannian distance
d(X,Y) equals the length of & = Z(0) € TxSt(n, p):

d(X,Y) = IE]le = V(& &)

Compute the length of
the of Y with
base point X, i.e.,

Logx(Y)=¢.

~> How do we compute d(X, Y) in practice / numerically?
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III. The shooting method



Single shooting for BVPs

> Boundary value problem (BVP): Find w(x): [4,b] — R that satisfies

w(a) = a,

w” = f(x,w,w’), with BCs {w(b) iy

» Recast it as an initial value problem (IVP): Find w(x) that satisfies

w” = f(x,w,w’), withICs {wfa) - @
w’(a) = s.

~> In general, this has a unique solution w(x) = w(x;s) which depends on s
(Picard-Lindeldf theorem). Analytical or numerical solution (e.g., Runge—Kutta).
~> Single shooting method for BVPs:
» Define F(s) = w(b;s) - B.
» Find S s.t. F(5) = 0. Usually, with Newton’s method.

BVPs and shooting methods: see, e.g., [Stoer/Bulirsch 1991]
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Single shooting for BVPs: example

w'(a; 50)

11 6]
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Single shooting for BVPs: example
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Single shooting for BVPs: example
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Single shooting for BVPs: example
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Single shooting for BVPs: example

]
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Stiefel geodesics via single shooting/1

» Problem statement:

Find & = Z(0) € TxSt(n, p) Ty
that satisfies the BVP '\ =

X
5= pITZ - Z(ZT I+ 5T Z), ’

with BCs {Z(O) =X

Z(1)=Y.

XT& —(XIé)T]t)[Ip]

> Recall: we have the explicit solution: Z(t) = [X X ]exp( .

~> Single shooting for Stiefel geodesics:
» Define F((E) = Z(t:l,é) -Y.
> Find & s.t. F(&) = 0 with Newton’s method.

Shooting method on the Stiefel manifold: [Bryner 2017, S. 2020, S./Vandereycken 2020]

15/25



Stiefel geodesics via single shooting/2

» Numerical experiment on St(15, 4).

> Monitored quantity: norm of the residual 5&W) of F(é(k)) = Z(t:l,é(k)) -Y.

——16eM]l2 |
Quadratic

. 0,
+ Quadratic convergence. 9

A good initial guess &) is needed.

» Local problem (X and Y “close”) can
be solved very well by single shooting.

—10
» A non-unitary step size (e.g., Armijo 10

condition) might be used to make the

shooting more robust.
101

iteration k of single shooting

MATLAB code available: github.com/MarcoSutti/LFMS_Stiefel
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https://github.com/MarcoSutti/LFMS_Stiefel

IV. Applications



Model order reduction/1

> Model order reduction (MOR) for dynamical systems parametrized according
_ T
top=[pi,-- pal-

> For each parameter p; in a set {p1,py, ..., pk}, use proper orthogonal
decomposition (POD) to derive a reduced-order basis V; € St(n,7), r < n.

{i(t;p) = A(p)x(t;p) + B(p) u(t), {ir(t;p) =Ar(p)x,(t;p) + By (p) u(t),
y(t;p) = C(p) (t:p), reduction | ¥r(t:p) = Cr(p) x(t; p),

x(t;p) € u(t) e R™, y(t) e RY, x,=V'x, A,=VTAV, B,=V'B,
A(p) e R™" B(p) e R™™, C(p) e RT*". C,=CV, V=V(p)eSt(nr), r<n.

~> This gives a set of local basis matrices {V;, V>,..., Vi /.

MOR, POD: [Benner/Gugercin/Willcox 2015]
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Model order reduction/2

> Given a new parameter value p, a basis V can be obtained by interpolating
the local basis matrices on a tangent space to St(1, r).

> For interpolation on TV3 St(n, ), the distance is needed.

Interpolation in the tangent space to a manifold: [Hiiper/Silva Leite 2007,
Amsallem 2010, Amsallem/Farhat 2011]
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Model order reduction/3

Transient heat equation on a square domain, with 4 disjoint discs.

err-interp

> FEM discretization with #n = 1169. Simulation for ¢ € [0,500], with At = 0.1.

> 500 snapshot POD over 5000 timeframes, with a reduced model of size r = 4.

> Relative error between y(-;p) and y,(-; p) is about 1%.
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Details for these experiments: [S. 2020]
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!

Notion of M, defined by the optimization
problem
N
= argmm Z (p.4i),

i=1

where d(p, g;) is the on M,and gq; € M, fori=1,...,N.

For St(n, p), the distances d(p, q;) are computed with our algorithm.

On manifolds of positive curvature the Riemannian center of mass is

general not unique. But if the data points are close enough, then uniqueness is
guaranteed.

St(n, p) has also positive curvature (an upper bound on its sectional
curvature is given by 5/4).

Riemannian center of mass: [Cartan 1920s, Calabi 1958, Grove/Karcher 1973]
Uniqueness of the Riemannian center of mass: [Afsari/Tron/Vidal 2013]
Upper bound on the sectional curvature of St(#, p): [Rentmeesters 2013]
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Riemannian center of mass of a shape set

> “device7” shape set from the MPEG-7 dataset. > Riemannian center of mass:
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MPEG-7: [Bober 2001], affine-standardized shapes: [Bryner 2017]
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Riemannian center of mass for summary statistics/1

» Consider the space of univariate probability density functions (PDFs) on the
unit interval [0, 1], i.e.,

P:{g: [0,1] > Ryy: Jolg(x)dx: 1}.

» By introducing the half-density representation of the elements of P,

q(t) = +/g(2), the set P can be identified with the positive orthant of the
Hilbert sphere S

Q= {g: [0.1] > Roo: lgl = 1}

» The identification of P with @ C §* allows us to attach a spherical structure
to P, so that the unit n-sphere S” = {x € R"*! : ||x|| = 1}, for some large n,
can be used to approximate S in practical situations.

Functional and shape data analysis: [Srivastava/Klassen 2016]
23/25



Riemannian center of mass for summary statistics/2

> Example: Riemannian center of mass of the approximate half-density
representations of 3 PDFs.

» Sampled at n = 100 points, which makes them elements of St(100,1) = S%°.
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Functional and shape data analysis: [Srivastava/Klassen 2016]
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Conclusions

This talk:

> Computing the Riemannian distance can be a
hard problem.

> Computational framework: shooting method.

> Applications in imaging, model order
reduction, and summary statistics.

Outlook:

> Recent advances in numerical algorithms: [Zimmermann 2017,
Zimmermann/Hiper 2022].

> Other novel applications on St(#, p) for: EEG data [Yamamoto et al. 2021], brain
network harmonics [Chen et al. 2021], clustering problems [Huang et al. 2022],
federated learning [Li/Ma 2022] ...

> Next talk (2022.11.10): Riemannian BFGS method and its application to image
segmentation on the Stiefel manifold [Ring/Wirth 2012].

~> Download slides: marcosutti.net/research.html#talks
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https://marcosutti.net/research.html#talks

V. Bonus material



Geodesics

> Generalization of straight lines to manifolds.

» Locally curves of shortest length, but they may not be.

» Hopf-Rinow theorem guarantees the existence of a length-minimizing
geodesic connecting any two given points.



Affine standardized shapes/1

> Let R™P space of point sets of size  in IR?, i.e., X € [x{,...,x,]" € R™P, and
let the affine group G, = GL(p) »< RP.

» The of G, on IR™P defines the orbits
[X]={XA+B|AeGL(p), B=1diag(b)},

where GL(p) space of invertible p-by-p matrices, b € RP, and 1 = ones(n,p).
» Centroid and covariance matrix:

n

1
Cx =~ in, Ty = (X —1diag(Cx))" (X — 1 diag(Cy)).
i=1

» VX full rank, 3 affine-standardized point set X, € [X] that satisfies both
Cx =0and Xy =1. That is, X € St(n, p).

Affine-standardized shapes: [Bryner 2017]



Affine standardized shapes/2

> V affine-standardized point sets X(()l), X(()z) € [X], we have X(()z) ~ X(()z) up to

an orthogonal transformation in O(p). Le., X(()z) = X(()l)Q for some Q € O(p).

> Space of all affine-standardized point sets (affine-invariant “preshape” space)
An,p ={XEIR”><P|CX =O,ZX ZI}

~> It is just St(n, p)!

» The examples shown at the beginning of this talk focus on the special case of
p = 2 for illustration purposes.

> Affine-invariant shape space is the quotient A,, ,/O(p).

!\ An analysis on St(1, p) alone is equivalent to an analysis on A, ,. So it is
an affine-invariant shape analysis.

Affine-standardized shapes: [Bryner 2017]



Let (M, g) be a (connected) Riemannian manifold. )
Then the following conditions are equivalent:
Closed and bounded subsets of M are 2

(M,g)isa metric space;
(M, g)is ,ie., for any x € M, the exponential map

Exp, is defined on the entire tangent space T, M.

\

Any of the above implies that given any two points x, y € M, there exists a
length-minimizing geodesic connecting these two points.

The Stiefel manifold is

~> Length-minimizing geodesics exist.

Riemannian Geometry, Sakai 1992



The

orthogonal group as a special case of St(n, p)

If p = n, then the Stiefel manifold reduces to the orthogonal group
O(n)={XeR™: X"X=1,),
and the tangent space at X is given by

TxO(n) ={XQ: Q7 = -Q} = XSiew(n).

Furthermore, if X = I,,, we have T; O(n) = Syiew (7). This means that the
tangent space to O(n) at the identity matrix I, is the set of skew-symmetric
n-by-n matrices Sgiew (7).

In the language of Lie groups, we say that Sgew (7) is the Lie algebra of the
Lie group O(n).



Geodesics via multiple shooting

Global problem (X and Y “far”)

» Based on subdivision.

» Enforce continuity conditions of Z and 7 at the interfaces between
subintervals.

Xp: point on St(n, p) relative
to the k-th subinterval.

&x: tangent vector to St(n, p)
at X.




Geodesics via multiple shooting

System of nonlinear equations:

Zil) —252)
n)_ 5
Zzz _223 g 1 o le)
z? -z 0 ¢® -1
Fpni= 2 gl ||=0, l, “ . O|6Z=-F(Z).
: o G -1
rn = Z;l) — YO < o o D
= 2(1m) -7 =:DF(X)

+ Fast convergence to &.

A very good initial guess &) is still needed.



