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Overview

▶ Many applications in diverse fields
(such as optimization, image and
signal processing, statistics, . . . )
deal with data belonging to the
Stiefel manifold

St(n,p) = {X ∈Rn×p : X⊤X = Ip}.

TXSt(n,p)

St(n,p)

ξ

X

▶ Evaluation of the distance between two points on St(n,p).

▶ No closed-form solution is known for St(n,p) !

This talk:

I. Motivating example.

II. Geometry of the Stiefel manifold.

III. Computational framework based on the shooting method.

IV. Some example applications.
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I. Motivation



A motivating example: imaging/1
▶ Need to deal with transformations that are more complicated than similarity

transformations (translation/rotation/scaling).

▶ E.g., distortion, or imaging the same scene from different viewing angles.

▶ Example: two shapes from the MPEG-7 dataset, with a certain degree of
similarity.

{ How “far” are they from each other?

MPEG-7: [Bober 2001], affine-standardized shapes: [Bryner 2017]
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A motivating example: imaging/2

▶ One usually goes beyond the similarity group to define shape equivalences.

▶ Geodesics on St(n,2), with shapes from the MPEG-7 dataset.
dist.

0.28

1.23

0.55

0.78

0.21

MPEG-7: [Bober 2001], affine-standardized shapes: [Bryner 2017]
5 / 25



II. The Stiefel manifold



The Stiefel manifold and its tangent space
▶ Set of matrices with orthonormal

columns:

St(n,p) = {X ∈Rn×p : X⊤X = Ip}.

TXSt(n,p)

St(n,p)

ξ

X

▶ Tangent space toM at x: set of all tangent vectors toM at x, denoted TxM.
For St(n,p),

TXSt(n,p) = {ξ ∈Rn×p : X⊤ξ + ξ⊤X = 0}.
▶ Alternative characterization of TXSt(n,p):

TXSt(n,p) = {XΩ +X⊥K : Ω = −Ω⊤, K ∈R(n−p)×p},

where span(X⊥) =
(
span(X)

)⊥
.

▶ Dimension: since dim
(
St(n,p)

)
= dim

(
TXSt(n,p)

)
, we have

dim(St(n,p)) = dim(Sskew) + dim(R(n−p)×p) = np − 1
2p(p+1).

Stiefel manifold: [Stiefel, 1935]
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Riemannian manifold

A manifoldM endowed with a smoothly-varying inner product (called
Riemannian metric g) is called Riemannian manifold.

{ A couple (M, g), i.e., a manifold with a Riemannian metric on it.

{ For the Stiefel manifold:

▶ Embedded metric inherited by TXSt(n,p) from the embedding space Rn×p

⟨ξ,η⟩ = Tr(ξ⊤η), ξ, η ∈ TXSt(n,p).

▶ Canonical metric by seeing St(n,p) as a quotient of the orthogonal group
O(n): St(n,p) = O(n)/O(n− p)

⟨ξ,η⟩c = Tr(ξ⊤(I − 1
2XX⊤)η), ξ, η ∈ TXSt(n,p).
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Metrics and geodesics on St(n,p)

Embedded metric:

⟨ξ,η⟩ = Tr(ξ⊤η).

Canonical metric:

⟨ξ,η⟩c = Tr(ξ⊤(I − 1
2XX⊤)η).

Length of a tangent vector ξ = XΩ +X⊥K :

∥ξ∥F =
√
⟨ξ,ξ⟩ =

√
∥Ω∥2F + ∥K∥2F. ∥ξ∥c =

√
⟨ξ,ξ⟩c =

√
1
2∥Ω∥2F + ∥K∥2F.

▶ Closed-form solution (with the canonical
metric) for a geodesic Z(t) that realizes ξ
with base point X:

Z(t) = [X X⊥] exp
([
X⊤ξ −(X⊤⊥ξ)⊤
X⊤⊥ξ O

]
t

)[
Ip
O

]
.

TXSt(n,p)

St(n,p)

ξ

X

Y

Z(t)
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Riemannian exponential and logarithm

▶ Given x ∈M and ξ ∈ TxM, the exponential mapping Expx : TxM→M s.t.
Expx(ξ)B γ(1), with γ being the geodesic with γ(0) = x, .γ(0) = ξ .

▶ Corollary: Expx(tξ)B γ(t), for t ∈ [0,1].
▶ ∀x, y ∈M, the mapping Exp−1x (y) ∈ TxM is called logarithm mapping.

Example. LetM = Sn−1, then the
exponential mapping at x ∈ Sn−1 is

y = Expx(ξ) = xcos(∥ξ∥) + ξ
∥ξ∥ sin(∥ξ∥),

and the Riemannian logarithm is

Logx(y) = ξ = arccos(x⊤y) Px y
∥Px y∥

,

where y ≡ γ(1) and Px is the projector
onto

(
span(x)

)⊥
, i.e., Px = I − xx⊤.

γ

y = Expx(ξ)

TxS2

S2

ξx

10 / 25



Riemannian distance on St(n,p)

▶ Property: Given X, Y ∈ St(n,p), s.t. ExpX(ξ) = Y , the Riemannian distance
d(X,Y ) equals the length of ξ ≡ .

Z(0) ∈ TXSt(n,p):

d(X,Y ) = ∥ξ∥c =
√
⟨ξ,ξ⟩c.

TXSt(n,p)

St(n,p)

ξ

X

Y

Z(t)

Equivalent to: Compute the length of
the Riemannian logarithm of Y with
base point X, i.e.,

LogX(Y ) = ξ.

▶ No closed-form solution is known for St(n,p) !

{ How do we compute d(X,Y ) in practice / numerically?
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III. The shooting method



Single shooting for BVPs
▶ Boundary value problem (BVP): Find w(x) : [a,b]→R that satisfies

w′′ = f (x,w,w′), with BCs


w(a) = α,

w(b) = β.

▶ Recast it as an initial value problem (IVP): Find w(x) that satisfies

w′′ = f (x,w,w′), with ICs


w(a) = α,

w′(a) = s.

{ In general, this has a unique solution w(x) ≡ w(x;s) which depends on s
(Picard–Lindelöf theorem). Analytical or numerical solution (e.g., Runge–Kutta).

{ Single shooting method for BVPs:

▶ Define F(s) = w(b;s)− β.
▶ Find s̄ s.t. F(s̄) = 0. Usually, with Newton’s method.

BVPs and shooting methods: see, e.g., [Stoer/Bulirsch 1991]
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Single shooting for BVPs: example
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Single shooting for BVPs: example
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Stiefel geodesics via single shooting/1

▶ Problem statement:
Find ξ ≡ .

Z(0) ∈ TXSt(n,p)
that satisfies the BVP
..
Z = − .Z .

Z⊤Z −Z((Z⊤ .Z)2 + .
Z⊤

.
Z),

with BCs


Z(0) = X,

Z(1) = Y .

▶ Recall: we have the explicit solution:

TXSt(n,p)

St(n,p)

ξ

X

Y

Z(t)

Z(t) = [X X⊥] exp
([
X⊤ξ −(X⊤⊥ξ)⊤
X⊤⊥ξ O

]
t

)[
Ip
O

]
.

{ Single shooting for Stiefel geodesics:

▶ Define F(ξ) = Z(t=1,ξ) −Y .
▶ Find ξ s.t. F(ξ) = 0 with Newton’s method.

Shooting method on the Stiefel manifold: [Bryner 2017, S. 2020, S./Vandereycken 2020]
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Stiefel geodesics via single shooting/2

▶ Numerical experiment on St(15,4).

▶ Monitored quantity: norm of the residual δξ(k) of F(ξ(k)) = Z(t=1,ξ(k)) −Y .

+ Quadratic convergence.
− A good initial guess ξ(0) is needed.

▶ Local problem (X and Y “close”) can
be solved very well by single shooting.

▶ A non-unitary step size (e.g., Armijo
condition) might be used to make the
shooting more robust.

MATLAB code available: github.com/MarcoSutti/LFMS_Stiefel
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IV. Applications



Model order reduction/1

▶ Model order reduction (MOR) for dynamical systems parametrized according
to p = [p1, . . . ,pd]

⊤.
▶ For each parameter pi in a set {p1,p2, . . . ,pK }, use proper orthogonal

decomposition (POD) to derive a reduced-order basis Vi ∈ St(n,r), r ≪ n.



.
x(t;p) = A(p)x(t;p) +B(p)u(t),
y(t;p) = C(p)x(t;p),

x(t;p) ∈Rn, u(t) ∈Rm, y(t) ∈Rq,

A(p) ∈Rn×n, B(p) ∈Rn×m, C(p) ∈Rq×n.

reduction



.
xr (t;p) = Ar (p)xr (t;p) +Br (p)u(t),
yr (t;p) = Cr (p)xr (t;p),

xr = V⊤x, Ar = V⊤AV , Br = V⊤B,
Cr = CV , V ≡ V (p) ∈ St(n,r), r ≪ n.

{ This gives a set of local basis matrices {V1,V2, . . . ,VK }.

MOR, POD: [Benner/Gugercin/Willcox 2015]
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Model order reduction/2

▶ Given a new parameter value p̂, a basis V̂ can be obtained by interpolating
the local basis matrices on a tangent space to St(n,r).

▶ For interpolation on TV3
St(n,r), the distance is needed.

St(n,r)

TV3
St(n,r)

V3

V2

Γ2

V1

Γ1

V4

Γ4Γ̂

V̂

Interpolation in the tangent space to a manifold: [Hüper/Silva Leite 2007,
Amsallem 2010, Amsallem/Farhat 2011]
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Model order reduction/3

Transient heat equation on a square domain, with 4 disjoint discs.

▶ FEM discretization with n = 1169. Simulation for t ∈ [0,500], with ∆t = 0.1.

▶ 500 snapshot POD over 5000 timeframes, with a reduced model of size r = 4.

▶ Relative error between y(·; p̂) and yr (·; p̂) is about 1%.

Details for these experiments: [S. 2020]
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Riemannian center of mass

▶ Notion of mean on a Riemannian manifoldM, defined by the optimization
problem

µ = argmin
p∈M

1
2N

N∑

i=1

d2(p,qi),

where d(p,qi) is the Riemannian distance onM, and qi ∈M, for i = 1, . . . ,N .

▶ For St(n,p), the distances d(p,qi) are computed with our algorithm.

▲! Caveat: On manifolds of positive curvature the Riemannian center of mass is
general not unique. But if the data points are close enough, then uniqueness is
guaranteed.

▶ St(n,p) has also positive curvature (an upper bound on its sectional
curvature is given by 5/4).

Riemannian center of mass: [Cartan 1920s, Calabi 1958, Grove/Karcher 1973]
Uniqueness of the Riemannian center of mass: [Afsari/Tron/Vidal 2013]
Upper bound on the sectional curvature of St(n,p): [Rentmeesters 2013]
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Riemannian center of mass of a shape set

▶ “device7” shape set from the MPEG-7 dataset. ▶ Riemannian center of mass:

MPEG-7: [Bober 2001], affine-standardized shapes: [Bryner 2017]
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Riemannian center of mass for summary statistics/1

▶ Consider the space of univariate probability density functions (PDFs) on the
unit interval [0,1], i.e.,

P =
{
g : [0,1]→R⩾0 :

∫ 1
0 g(x)dx = 1

}
.

▶ By introducing the half-density representation of the elements of P ,
q(t) =

√
g(t), the set P can be identified with the positive orthant of the

Hilbert sphere S∞

Q =
{
q : [0,1]→R⩾0 : ∥q∥ = 1

}
.

▶ The identification of P with Q ⊂ S∞ allows us to attach a spherical structure
to P , so that the unit n-sphere Sn = {x ∈Rn+1 : ∥x∥ = 1}, for some large n,
can be used to approximate S∞ in practical situations.

Functional and shape data analysis: [Srivastava/Klassen 2016]
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Riemannian center of mass for summary statistics/2

▶ Example: Riemannian center of mass of the approximate half-density
representations of 3 PDFs.

▶ Sampled at n = 100 points, which makes them elements of St(100,1) ≡ S99.

Functional and shape data analysis: [Srivastava/Klassen 2016]
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Conclusions

This talk:
▶ Computing the Riemannian distance can be a

hard problem.

▶ Computational framework: shooting method.

▶ Applications in imaging, model order
reduction, and summary statistics.

X

Y

Outlook:
▶ Recent advances in numerical algorithms: [Zimmermann 2017,

Zimmermann/Hüper 2022].
▶ Other novel applications on St(n,p) for: EEG data [Yamamoto et al. 2021], brain

network harmonics [Chen et al. 2021], clustering problems [Huang et al. 2022],
federated learning [Li/Ma 2022] . . .

▶ Next talk (2022.11.10): Riemannian BFGS method and its application to image
segmentation on the Stiefel manifold [Ring/Wirth 2012].

{ Download slides: marcosutti.net/research.html#talks
25 / 25

https://marcosutti.net/research.html#talks


V. Bonus material



Geodesics

▶ Generalization of straight lines to manifolds.

▶ Locally curves of shortest length, but globally they may not be.

X

Y

▶ Hopf–Rinow theorem guarantees the existence of a length-minimizing
geodesic connecting any two given points.



Affine standardized shapes/1

▶ Let Rn×p space of point sets of size n in R
p, i.e., X ∈ [x1, . . . ,xn]⊤ ∈Rn×p, and

let the affine group Ga = GL(p)⋉R
p.

▶ The action of Ga on R
n×p defines the orbits

[X] = {XA+B | A ∈ GL(p), B = 1diag(b)} ,
where GL(p) space of invertible p-by-p matrices, b ∈Rp, and 1 = ones(n,p).

▶ Centroid and covariance matrix:

CX B
1
n

n∑

i=1

xi , ΣX B (X − 1 diag(CX ))
⊤ (X − 1 diag(CX )) .

▶ ∀X full rank, ∃ affine-standardized point set X0 ∈ [X] that satisfies both
CX = 0 and ΣX = I . That is, X0 ∈ St(n,p).

Affine-standardized shapes: [Bryner 2017]



Affine standardized shapes/2

▶ ∀ affine-standardized point sets X(1)
0 , X(2)

0 ∈ [X], we have X(2)
0 ∼ X

(2)
0 up to

an orthogonal transformation in O(p). I.e., X(2)
0 = X

(1)
0 Q for some Q ∈O(p).

▶ Space of all affine-standardized point sets (affine-invariant “preshape” space)

An,p =
{
X ∈Rn×p | CX = 0, ΣX = I

}
.

{ It is just St(n,p)!

▶ The examples shown at the beginning of this talk focus on the special case of
p = 2 for illustration purposes.

▶ Affine-invariant shape space is the quotient An,p/O(p).

▲! An analysis on St(n,p) alone is equivalent to an analysis on An,p. So it is not
an affine-invariant shape analysis.

Affine-standardized shapes: [Bryner 2017]



Hopf–Rinow Theorem

Theorem ([Hopf/Rinow]) Let (M, g) be a (connected) Riemannian manifold.
Then the following conditions are equivalent:
1. Closed and bounded subsets ofM are compact;
2. (M, g) is a complete metric space;
3. (M, g) is geodesically complete, i.e., for any x ∈M, the exponential map

Expx is defined on the entire tangent space TxM.

Any of the above implies that given any two points x, y ∈M, there exists a
length-minimizing geodesic connecting these two points.

The Stiefel manifold is compact/complete/geodesically complete.

{ Length-minimizing geodesics exist.

Riemannian Geometry, Sakai 1992



The orthogonal group as a special case of St(n,p)

▶ If p = n, then the Stiefel manifold reduces to the orthogonal group

O(n) = {X ∈Rn×n : X⊤X = In},
and the tangent space at X is given by

TXO(n) = {XΩ : Ω⊤ = −Ω} = XSskew(n).

▶ Furthermore, if X = In, we have TInO(n) = Sskew(n). This means that the
tangent space to O(n) at the identity matrix In is the set of skew-symmetric
n-by-n matrices Sskew(n).

▶ In the language of Lie groups, we say that Sskew(n) is the Lie algebra of the
Lie group O(n).



Geodesics via multiple shooting

Global problem (X and Y “far”)

▶ Based on subdivision.

▶ Enforce continuity conditions of Z and
.
Z at the interfaces between

subintervals.

St(n,p)

X1

Z1

X2

Z2

Y

X
ξ1

ξ2

.
Z2

.
Z1

Xk : point on St(n,p) relative
to the k-th subinterval.

ξk : tangent vector to St(n,p)
at Xk .



Geodesics via multiple shooting

System of nonlinear equations:

F(Σ) =




Z
(1)
1 −Σ

(2)
1

Z
(1)
2 −Σ

(2)
2

Z
(2)
1 −Σ

(3)
1

Z
(2)
2 −Σ

(3)
2...

r1 = Σ
(1)
1 −Y0

r2 = Σ
(m)
1 −Y1




= 0, linearize




G(1) −I O O
O G(2) −I ...

... ... ... O
O ... G(m−1) −I
C O O D




︸                                  ︷︷                                  ︸
=:DF(Σ)

δΣ = −F(Σ).

+ Fast convergence to ξ .

− A very good initial guess ξ(0) is still needed.


