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Overview

Paper: Optimization Methods on Riemannian Manifolds and Their Application to
Shape Space, W. Ring and B. Wirth, SIAM J. Optim., 2012 22:2, 596-62.
~> Hereafter: [Ring/Wirth 2012].

Contributions:
> Convergence and convergence rates of BFGS quasi-Newton methods.
> Convergence and convergence rates of Fletcher—Reeves nonlinear CG.

> Numerical applications (image segmentation, truss shape deformations).

This talk:

I. Optimization on matrix manifolds, fundamental ideas and tools of
Riemannian geometry that we use in optimization algorithms.

II. Riemannian BFGS, fundamental ideas [Ring/Wirth 2012, §3.1].
III. Application to image segmentation [Ring/Wirth 2012, §4.2].
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https://epubs.siam.org/doi/10.1137/11082885X

I. Optimization on matrix manifolds



Optimization problems on matrix manifolds

> We can state the optimization problem as

Lk f(x),

where f: M — R is the objective function and M is some matrix manifold.

> Matrix manifold: any manifold that is constructed from IR"*P by taking
either embedded submanifolds or quotient manifolds.

» Examples of embedded submanifolds: orthogonal Stiefel manifold, manifold of
symplectic matrices, manifold of fixed-rank matrices, ...

» Example of quotient manifold: the Grassmann manifold.

> Motivation: exploit the underlying geometric structure, take into account the
constraints explicitly!

Manifold optimization: [Edelman et al. 1998, Absil et al. 2008, Boumal 2022], ...
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https://epubs.siam.org/doi/10.1137/S0895479895290954
https://press.princeton.edu/absil
https://www.nicolasboumal.net/book/IntroOptimManifolds_Boumal_2022.pdf

The Stiefel manifold and its tangent space

TxSt(n,p)

» Set of matrices with orthonormal
columns:

St(n,p) = {X e R"P: XX =1,}.

» Tangent space to M at x: set of all tangent vectors to M at x, denoted T, M.
For St(n, p),

TxSt(n,p)={XQ+ X, K: Q=-Q7, K e R"P>p),
where X, € R™("P) is orthonormal and span(X ) = (span(X))L.
» Dimension: since dim(St(n,p)) = dim(TXSt(n,p)), we have

dim(St(n, p)) = dim(Sgew) + dim(R"P>P) = np — Sp(p +1).

Stiefel manifold: [Stiefel 1935]
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A endowed with a (called
) is called

A couple , 1.e., a manifold with a Riemannian metric on it.

~> For the Stiefel manifold:

» Embedded metric inherited by TxSt(n, p) from the embedding space IR"*P

(Eny=Tr(E™y), & neTxSt(np).

» Canonical metric by seeing St(n, p) as a quotient of the orthogonal group
O(n): St(n,p) = O(n)/O(n - p)

(&mye =Te(ET(I-5XXT)ny), & neTxSt(np).
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Metrics on St(n, p)

TxSt(n,p)

St(n, p)

Embedded metric: Canonical metric:

(&) =Tr(ETy). (&M =Te(ET(I - 1XXT) 7).

Length of a tangent vector £ = XQ + X | K:

IElle = V(E, &) = \IQIIE + IIKIIE. I1€llc = VK& &)e = S IQIIE + IKIIE.

0 a b
—a 0 «c|, then ||Q||I% =202 + 202 + 2¢2.
-b — 0

Example forp =3: Q=
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Riemannian gradient

Let f: M — R. E.g., the objective function in an optimization problem.

~> For any embedded submanifold:

> Riemannian gradient: projection onto Ty M of the Euclidean gradient

grad f(X) =P, m(Vf(X)).

~> For the Stiefel manifold, the orthogonal projection of a given matrix M € R™*P
onto the tangent space is

Pr st (M) = X skew(XTM) + (I - XXT) M.

~> Vf(X) is the Euclidean gradient of f(X). E.g., for f(X) = —% Tr(XTAX), one
has Vf(X) = -AX.

Matrix and vector calculus: The Matrix Cookbook, www.matrixcalculus.org, ...
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https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.matrixcalculus.org

Riemannian exponential and logarithm

y(0) = &£. The
y(1).

IIY

» Letx e M, £ € T, M, and y(t) the geodesic such that y(0) = x,
exponential mapping Exp, : T,M — M is defined as Exp, (&) :

> Corollary: Exp, (t&) := p(t), for t € [0, 1].
> Vx, y € M, the mapping Exp;!(y) € T, M is called logarithm mapping.

Example. Let M = 8”1, then the
exponential mapping at x € S"~! is

v = Exp, (&) = xcos(||]l) + 7= sin(lI£]]),

||<§|I

and the Riemannian logarithm is

Pyy
P I’

where y = (1) and P, is the projector

Log,(v)=¢& = arccos(x"p)

onto (span(x)) ,ie,Py=T—xxT.
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Riemannian exponential and logarithm on St(#, p)

> Explicit expression (with the canonical metric) of the Riemannian
exponential on the Stiefel manifold St(#, p):

_ e XTE (X[ 1
Y_Expx(é)—Z(l)—[XXﬂexP([ng e ])[O(p ]

n—p)xp

> Recall: there is no explicit expression for the Riemannian logarithm on the
Stiefel manifold (see talk of Oct. 27, 2022).
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https://marcosutti.net/talks/202210127_MeDA_Seminar_1.pdf

Riemannian distance

» Definition: given x, y € M, the Riemannian distance dist(x, p) is defined as

dist(x, ) = f?ll]IlM Lly], where L[y]= J,/gy

7( )=x, y(1)=

» Property: given x, y € M, and & € T, M such that Exp (&) =y, the
Riemannian distance dist(x, ) equals the length of £ = 7(0) € T, M, i.e.,

dist(x,y) = [|<] = V(&, &).

Equivalent to: Compute the length of
the Riemannian logarithm of y with
base point x, i.e.,

Log,(v) =¢&.
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Line search on a manifold

» Recall (e.g., from here, §1.1): line-search methods in [R" are based on the
update formula

Xk+1 = Xk T Ak Py

where ) € R is the step size and p; € R” is the search direction.

~> On nonlinear manifolds:
» p;. will be a tangent vector to M at xi, ie., p; T, M.
» Search along a curve in M whose tangent vector at a = 0 is py.

~> Retraction.

.
Xge1 = Ry (akpr)
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https://marcosutti.net/files/Notes_BFGS.pdf

Retractions/1

> Move in the direction of £ while remaining constrained to M.

» Smooth mapping R, : T, M — M with a local condition that preserves
gradients at x.

» The Riemannian exponential mapping is also a retraction, but it is not
computationally efficient.

» Retractions: first-order approximation of the Riemannian exponential!

Constructing retractions: [Absil/Malick 2012]
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https://epubs.siam.org/doi/10.1137/100802529

Retractions/2

Properties:

(i) Re(0,) = x, where 0, is the zero element
of T, M.

(i) With the identification Ty T, M =T, M,
R, satisfies the local wldlt\ condition

DR,(0,) = idr, ot

Two main purposes:
» Turn points of T, M into points of M.

» Transform cost functions f: M — R defined in a neighborhood of x € M
into cost functions fg_:= f o R, defined on the vector space T, M.
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Retractions on embedded submanifolds

Let M be an embedded submanifold of a vector space £. Thus T, M is a linear
subspace of T,£ ~&. Sincexe M C € and £ € T, M C T,.£ ~ &, with little abuse
of notation we write x + & € £.

~> General recipe to define a retraction R (&) for embedded submanifolds:
» Move along & to get to x+ & in .

> Map x + & back to M. For matrix manifolds, use matrix decompositions.

Example. Let M = 8”1, then the
retraction at x € S ! is

_ x+&
e+l

Ry (&)

defined for all & € T, S""1. R(&) is
the point on S"~! that minimizes the
distance to x + &.
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Retractions on the Stiefel manifold

. o . . ° nx
~> Based on matrix decompositions: given a generic matrix A € R, P

» Polar decomposition (~ polar form of a complex number):

A=UP, with Ue€St(np), Pe€Sym+(p)

» OR factorization (~ Gram—-Schmidt algorithm):

A=QR, with QeSt(n,p), ReSypp+(p)

Let X € St(n,p) and & € TxSt(n, p).

~> Retraction based on the polar decomposition:
Rx(&)= (X +&)(I+ET€)2
~> Retraction based on the QR factorization:
Ry (&) = qf(X + &),

where qf(A) denotes the Q factor of the QR factorization.
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Line search on a manifold (reprise)

Line-search methods on manifolds are based on the update formula

Xk+1 = R\;\ (akpi)s

where a; € Rand p; € T, M.

Recipe for constructing a line-search
method on a manifold:

» Choose a retraction R, .
» Select a search direction py. o1 = Ry, (@ipp)

> Select a step length o (e.g., by
using the Armijo condition).

Remark: If p; = —grad f(x;), we get the Riemannian steepest descent.
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Line search on a manifold (reprise)

Algorithm 1: Line-search minimization on manifolds.

Given f: M — IR, starting point xy € M;
k < 0;
repeat
choose a 0
choose a retraction Ry, : T, M — M;
choose a step length a; € R;
set Xg+1 = R.\;\ (axpr);
k—k+1;
until x;  sufficiently minimizes f;

[ ]
Xk+1 = Ry (axpr)
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Parallel transport

» Given a Riemannian manifold (M, g) and x, y € M, the parallel transport
Pyy: TxM — Ty M is alinear operator that preserves the inner product:

VECETM,  (Peoy &Py 0y =(5, Oy

I Caveat:

» Computing parallel transports, in
general, requires numerically
solving ODEs.

> One needs to choose a curve
connecting x and y explicitly. If
we choose a minimizing geodesic,
this requires computing the
Riemannian logarithm.

~> Computing the parallel transport might be too expensive in practice!

A\ Remark: parallel transport with the Levi-Civita connection.

If we use other connections, we get different properties.
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poor’s man version of parallel transport”.

No need for a Riemannian connection. If x and y are close enough to one
another, then one can define the linear map Ty<_x : T M — Ty/\/l, with
T, being the identity map.

Useful in defining a

The provide a transporter via Ty, = DR (v),
where v = R;!(y) [Boumal 2022, Prop. 10.64].

For &, a transporter can be
defined as [Boumal 2022, Prop. 10.66]

T =P ,
yex T,M T, M

where PTy M is the orthogonal projector from & to T, M, restricted to T, M.

Transporters: [Boumal 2022, §10.5]

20/33


https://www.nicolasboumal.net/book/IntroOptimManifolds_Boumal_2022.pdf

II. Riemannian BFGS
(§3.1)



Riemannian BFGS quasi-Newton method

» Fundamental idea of quasi-Newton methods: instead of computing the
approximate Hessian By from scratch at every iteration, we update it by
using the newest information gained during the last iteration.

» The search direction p; is chosen as the solution to

Bk(p/u') = _Df(xk)’

where By : T,M x T, M — R is updated according to
st = aipr =Ry (%), 9 =Dy, (s¢)=Dfg,, (0)

By (sk, v)Bi(sp, w) | (9xv)(mrw)
B (sk, sk) VkSk

Biy1(Tyv, Txw) = B (v, w) -

Vv,w € Ty, M. Here, Ty =Ty, ,, ., denotes a transporter Ty, M — Ty, M.

Riemannian BFGS: [Gabay 1982, Brace/Manton 2006, Qi/Gallivan/Absil 2010,
Ring/Wirth 2012, Huang/Gallivan/Absil 2015, Huang/Absil/Gallivan 2016]
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https://link.springer.com/article/10.1007/BF00934767
https://link.springer.com/chapter/10.1007/978-3-642-12598-0_16
https://epubs.siam.org/doi/10.1137/140955483
https://link.springer.com/chapter/10.1007/978-3-319-39929-4_60

Euclidean BFGS vs Riemannian BFGS

e Riemannian BFGS

(see notes, §1.1)

Sk = Xk+1 ~ Xk sk = Rygf (k1)

Yk = Vi1 — Vi % =Dfr, (st) =Dfr, (0),
Biy15k = Yis Bir1 (Tiesko ) = 9 Ti
B 5<STB< k % By (s, v) B (sp, w)
Bror = By — I B (T, Tyw) = By(v,w) - o e
Sk Brsk Yk Sk k(5K Sk)
. (k) (Pxw)

YkSk
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https://marcosutti.net/files/Notes_BFGS.pdf

Convergence and convergence rates of Riemannian BFGS
» Convergence of BFGS to the optimal value f(x*) [Prop. 10]:
f ) = £ () < P (£ (o) = ().

> Convergence of the iterates of BFGS to x* [Cor. 11]:

dist(xg, x*) <4/ — \/_k“dlst (x0,x).

» Convergence rate of BFGS [Cor. 13]: superlinear convergence, i.e.,

dist(xpy1,x)
k—oo dist(xy,x*)

Compare with:

Riemannian steepest descent Riemannian Newton’s method
B 12022, Thm. 4.20] gi .
[ oumé X mA | gives  dist(xp, %)
assumptions for the iterates xy to lim ——————<

i * k—oo dist”(xp, x*)
converge to a local minimizer x k-

atleastlincarky. [Ring/Wirth 2012, Prop. 7]

24/33


https://www.nicolasboumal.net/book/IntroOptimManifolds_Boumal_2022.pdf

III. Application to image segmentation
on the Stiefel manifold

(§4.2)



Space of smooth closed curves/1

» Riemannian optimization in the space of smooth closed curves (§4.2).

> Younes et al. represent a curve c: [0,1] — C = R? by two functions
e, :[0,1] > Rvia

o
c(6) = c(0) + -L (e+ig)>de.

> Conditions: closed ¢(1) = ¢(0), and of unit length, fo |c’(6)d6 = 1.
~> e and g orthonormal in L?([0,1]), thus (e, g) is an element of

St(L7([0,1]), 2) ={(e, g) € L2([0,1]): llelly2(jo,1)) = llgliz2qqo,1)y = 1 (e @)12(0,17) = O}-

Recall the inner product in L2([0,1]): (e, 8)2([o1]) = I()l e-gdx,

and the induced norm ||e||L2 ([0.1]) "J—O le(x |2 dx.

[Younes/Michor/Shah/Mumford 2008]
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https://ems.press/journals/rlm/articles/1612

Space of smooth closed curves/2

» Sundaramoorthi et al. represent a general closed curve ¢ by an element

(co, s (e, 8)) of RZxRx St(L7([0,1]), 2) via

(7]
c(6) = co + exfp J- (e +ig)2do.
0

where c is the curve centroid and exp p its length.

> Metric: ; ,
dh? dk
g[c](h k) = - kt+lgh€k€+/\d.[\ e Ed

on the tangent space of curve variations h, k: [c] — R?, where [c] is the
image of c: [0,1] — R?, s denotes arclength, and weights Ap, A4 > 0.

» There is a closed formula for the exponential map [Sundaramoorthi et
al. 2011].

[Sundaramoorthi/Mennucci/Soatto/Yezzi 2011]
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https://epubs.siam.org/doi/abs/10.1137/090781139

Objective functional/1

Given a gray scale image 1 : [0,1]?> — R, we would like to minimize the objective
functional

f(lc]) =a (J;nt[c](ui —u)?dx+ J;Xt[c](ug —u)? dx) +4d; J;C] ds,

where aq, a, > 0, u; and u, are given gray values, and int[c] and ext[c] denote the
interior and exterior of [c].

Meaning;:

» First two terms: indicate that [c] should enclose the image region where u is
close to u; and far from u,.

» Third term: acts as a regularizer and measures the curve length.

Image segmentation via active contours without edges: [Chan/Vese 2001]

Chan-Vese Segmentation in scikit-image
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https://ieeexplore.ieee.org/document/902291
https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_chan_vese.html

Objective functional/2

We interpret the curve ¢ as an element of the manifold IR? x R x St (Lz([O, 1]), 2)
and add a term that prefers a uniform curve parametrization:

f(co pr (e,8)) = ay (j e u)zdx+f i _u)zdx)
int[(co, p, (e,8))] ext[(co, p, (6,8))]

+ a5 exp(p) )

Numerical implementation:

> ¢ and g are discretized as piecewise constant functions on a uniform grid
over [0,1].

» The image u is given as pixel values on a uniform grid.
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soon as the derivative of the d.

Nongeodesic retraction ~ Geodesic retraction

Gradient descent
BFGS quasi-Newton
Fletcher—Reeves NC

Right column: geodesic retractions based on the matrix exponential [Sundaramoorthi
et al. 2011].



Experiments for different Ap and A, inside the metric

dn _ dk

ot gt ' dh® dk®
gej(hk)=h" k" + Agh"k™ + Ag ] ds I s.

A larger A; (top row) ensures a good curve positioning and scaling

. A small A; has a reverse effect (bottom row).

The ratio between A; and A;/A, decides whether the or the
is adjusted first.

Ag/Ae =16 Ag/Ae =1

a=te | | S N e W

o=t [ | | Y S w | |
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Numerical experiments/3

> Active contour segmentation on the widely used cameraman image.

> The iteration was stopped as soon as the derivative of the discretized objective
functional f reached an £?-norm less than 1072

> In the top row,

Fia. 5.

are shown.

inte ed.

Segmentation of the cameraman in
iteration and \; = A, )

Middl ,ag (¢ %),
Bottom: (a1,a

were reparameterized e

BFGS needed 46 steps, while gradient descent needed 8325 steps.

rameters (using the BFGS
steps 0, 1, 5, 10, 20, 46
steps 0, ), 40, 60, 116 shown

0, 100, 150, 200, 250 are shown. Th

The bottom iteration was stopped as soon as the curve s
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Conclusions

Pros and cons:

-+ Solid, quite well-understood mathematical theory behind.

Cannot deal with self-intersecting curves.

This talk:

> Fundamental ideas and tools of Riemannian geometry that we use in
optimization on Riemannian manifolds.

» Riemannian BFGS [Ring/Wirth 2012, §3.1].
> Application to image segmentation [Ring/Wirth 2012, §4.2].

~> Download slides: marcosutti.net/research.html#talks
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IV. Bonus material



Geodesics

> Generalization of straight lines to manifolds.
> Locally they are curves of shortest length, but globally they may not be.

> In general, they are defined as critical points of the length functional L[],
and may or may not be minima.

> The fundamental Hopf-Rinow theorem guarantees the existence of a
length-minimizing geodesic connecting any two given points.



Hopf-Rinow Theorem

[ Theorem ([Hopf/Rinow]) Let (M, g) be a (connected) Riemannian manifold. )
Then the following conditions are equivalent:
1. Closed and bounded subsets of M are compact;
2. (M, g) is a complete metric space;
3. (M, g) is geodesically complete, i.e., for any x € M, the exponential map
Exp, is defined on the entire tangent space T, M.

\ J

Any of the above implies that given any two points x, y € M, there exists a
length-minimizing geodesic connecting these two points.

The Stiefel manifold is compact/complete/geodesically complete.

~> Length-minimizing geodesics exist.

Riemannian Geometry, Sakai 1992



The orthogonal group as a special case of St(n, p)

» If p = n, then the Stiefel manifold reduces to the orthogonal group
On)={XeR™: XTX=1I,,
and the tangent space at X is given by
TxO(n) = {XQ: QT = -0} = XSgew(n).
> Furthermore, at X = I,,, we have Ty O(1) = Sgew(n), i.e., the tangent space
to O(n) at the identity matrix I, is the set of skew-symmetric n-by-n

matrices Sgyew (7). In the language of Lie groups, we say that Sgew (7) is the
Lie algebra of the Lie group O(n).



An analogy

Theory: ~ Algorithm:
Riemannian exponential ~ Retractions

Parallel transport ~ Transporters



