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Overview

Paper: Optimization Methods on Riemannian Manifolds and Their Application to
Shape Space, W. Ring and B. Wirth, SIAM J. Optim., 2012 22:2, 596–62.
{ Hereafter: [Ring/Wirth 2012].

Contributions:

▶ Convergence and convergence rates of BFGS quasi-Newton methods.

▶ Convergence and convergence rates of Fletcher–Reeves nonlinear CG.

▶ Numerical applications (image segmentation, truss shape deformations).

This talk:

I. Optimization on matrix manifolds, fundamental ideas and tools of
Riemannian geometry that we use in optimization algorithms.

II. Riemannian BFGS, fundamental ideas [Ring/Wirth 2012, §3.1].

III. Application to image segmentation [Ring/Wirth 2012, §4.2].
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https://epubs.siam.org/doi/10.1137/11082885X


I. Optimization on matrix manifolds



Optimization problems on matrix manifolds

▶ We can state the optimization problem as

min
x∈M

f (x),

where f : M→R is the objective function andM is some matrix manifold.

▶ Matrix manifold: any manifold that is constructed from R
n×p by taking

either embedded submanifolds or quotient manifolds.

▶ Examples of embedded submanifolds: orthogonal Stiefel manifold, manifold of
symplectic matrices, manifold of fixed-rank matrices, . . .

▶ Example of quotient manifold: the Grassmann manifold.

▶ Motivation: exploit the underlying geometric structure, take into account the
constraints explicitly!

Manifold optimization: [Edelman et al. 1998, Absil et al. 2008, Boumal 2022], . . .
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https://epubs.siam.org/doi/10.1137/S0895479895290954
https://press.princeton.edu/absil
https://www.nicolasboumal.net/book/IntroOptimManifolds_Boumal_2022.pdf


The Stiefel manifold and its tangent space

▶ Set of matrices with orthonormal
columns:

St(n,p) = {X ∈Rn×p : X⊤X = Ip}.

TXSt(n,p)

St(n,p)

ξ

X

▶ Tangent space toM at x: set of all tangent vectors toM at x, denoted TxM.
For St(n,p),

TXSt(n,p) = {XΩ +X⊥K : Ω = −Ω⊤, K ∈R(n−p)×p},

where X⊥ ∈Rn×(n−p) is orthonormal and span(X⊥) =
(
span(X)

)⊥
.

▶ Dimension: since dim
(
St(n,p)

)
= dim

(
TXSt(n,p)

)
, we have

dim(St(n,p)) = dim(Sskew) + dim(R(n−p)×p) = np − 1
2p(p+1).

Stiefel manifold: [Stiefel 1935]
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Riemannian manifold

A manifoldM endowed with a smoothly-varying inner product (called
Riemannian metric g) is called Riemannian manifold.

{ A couple (M, g), i.e., a manifold with a Riemannian metric on it.

{ For the Stiefel manifold:

▶ Embedded metric inherited by TXSt(n,p) from the embedding space Rn×p

⟨ξ,η⟩ = Tr(ξ⊤η), ξ, η ∈ TXSt(n,p).

▶ Canonical metric by seeing St(n,p) as a quotient of the orthogonal group
O(n): St(n,p) = O(n)/O(n− p)

⟨ξ,η⟩c = Tr(ξ⊤(I − 1
2XX⊤)η), ξ, η ∈ TXSt(n,p).
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Metrics on St(n,p)

TXSt(n,p)

St(n,p)

ξ

X

Embedded metric:

⟨ξ,η⟩ = Tr(ξ⊤η).

Canonical metric:

⟨ξ,η⟩c = Tr(ξ⊤(I − 1
2XX⊤)η).

Length of a tangent vector ξ = XΩ +X⊥K :

∥ξ∥F =
√
⟨ξ,ξ⟩ =

√
∥Ω∥2F + ∥K∥2F. ∥ξ∥c =

√
⟨ξ,ξ⟩c =

√
1
2∥Ω∥2F + ∥K∥2F.

Example for p = 3: Ω =

 0 a b
−a 0 c
−b −c 0

, then ∥Ω∥2F = 2a2 +2b2 +2c2.
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Riemannian gradient

Let f : M→R. E.g., the objective function in an optimization problem.

{ For any embedded submanifold:

▶ Riemannian gradient: projection onto TXM of the Euclidean gradient

gradf (X) = PTXM(∇f (X)).

{ For the Stiefel manifold, the orthogonal projection of a given matrixM ∈Rn×p
onto the tangent space is

PTXSt(n,p) (M) = X skew(X⊤M) + (I −XX⊤)M.

{ ∇f (X) is the Euclidean gradient of f (X). E.g., for f (X) = −1
2 Tr(X⊤AX), one

has ∇f (X) = −AX.

Matrix and vector calculus: The Matrix Cookbook, www.matrixcalculus.org, . . .
8 / 33

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.matrixcalculus.org


Riemannian exponential and logarithm

▶ Let x ∈M, ξ ∈ TxM, and γ(t) the geodesic such that γ(0) = x, .γ(0) = ξ . The
exponential mapping Expx : TxM→M is defined as Expx(ξ)B γ(1).

▶ Corollary: Expx(tξ)B γ(t), for t ∈ [0,1].
▶ ∀x, y ∈M, the mapping Exp−1x (y) ∈ TxM is called logarithm mapping.

Example. LetM = Sn−1, then the
exponential mapping at x ∈ Sn−1 is

y = Expx(ξ) = xcos(∥ξ∥) + ξ
∥ξ∥ sin(∥ξ∥),

and the Riemannian logarithm is

Logx(y) = ξ = arccos(x⊤y) Px y
∥Px y∥

,

where y ≡ γ(1) and Px is the projector
onto

(
span(x)

)⊥
, i.e., Px = I − xx⊤.

γ

y = Expx(ξ)

TxS2

S2

ξx
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Riemannian exponential and logarithm on St(n,p)

▶ Explicit expression (with the canonical metric) of the Riemannian
exponential on the Stiefel manifold St(n,p):

Y = ExpX(ξ) = Z(1) = [X X⊥] exp
([
X⊤ξ −(X⊤⊥ξ)⊤
X⊤⊥ξ O

])[
Ip

O(n−p)×p

]
.

TXSt(n,p)

St(n,p)

ξ

X

Y

Z(t)

▶ Recall: there is no explicit expression for the Riemannian logarithm on the
Stiefel manifold (see talk of Oct. 27, 2022).
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https://marcosutti.net/talks/202210127_MeDA_Seminar_1.pdf


Riemannian distance

▶ Definition: given x, y ∈M, the Riemannian distance dist(x,y) is defined as

dist(x,y) = min
γ : [0,1]→M

γ(0)=x, γ(1)=y

L[γ], where L[γ] =
∫ 1

0

√
gγ(t) (

.
γ(t), .γ(t))dt.

▶ Property: given x, y ∈M, and ξ ∈ TxM such that Expx(ξ) = y, the
Riemannian distance dist(x,y) equals the length of ξ ≡ .

γ(0) ∈ TxM, i.e.,

dist(x,y) = ∥ξ∥ =
√
⟨ξ,ξ⟩.

TXSt(n,p)

St(n,p)

ξ

X

Y

Z(t)

Equivalent to: Compute the length of
the Riemannian logarithm of y with
base point x, i.e.,

Logx(y) = ξ.
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Line search on a manifold

▶ Recall (e.g., from here, §1.1): line-search methods in R
n are based on the

update formula
xk+1 = xk +αkpk ,

where αk ∈R is the step size and pk ∈Rn is the search direction.

{ On nonlinear manifolds:

▶ pk will be a tangent vector toM at xk , i.e., pk ∈ TxkM.

▶ Search along a curve inM whose tangent vector at α = 0 is pk .

{ Retraction.

TxkM

M

αkpk
xk

xk+1 = Rxk (αkpk)
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https://marcosutti.net/files/Notes_BFGS.pdf


Retractions/1

▶ Move in the direction of ξ while remaining constrained toM.

▶ Smooth mapping Rx : TxM→M with a local condition that preserves
gradients at x.

TxM

M

ξ

x

Rx(ξ)

▶ The Riemannian exponential mapping is also a retraction, but it is not
computationally efficient.

▶ Retractions: first-order approximation of the Riemannian exponential!

Constructing retractions: [Absil/Malick 2012]
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Retractions/2

Properties:

(i) Rx(0x) = x, where 0x is the zero element
of TxM.

(ii) With the identification T0xTxM≃ TxM,
Rx satisfies the local rigidity condition

DRx(0x) = idTxM.

TxM

M

ξ

x

Rx(ξ)

Two main purposes:

▶ Turn points of TxM into points ofM.

▶ Transform cost functions f : M→R defined in a neighborhood of x ∈M
into cost functions fRx

B f ◦Rx defined on the vector space TxM.
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Retractions on embedded submanifolds
LetM be an embedded submanifold of a vector space E . Thus TxM is a linear
subspace of TxE ≃ E . Since x ∈M⊆ E and ξ ∈ TxM⊆ TxE ≃ E , with little abuse
of notation we write x+ ξ ∈ E .
{ General recipe to define a retraction Rx(ξ) for embedded submanifolds:

▶ Move along ξ to get to x+ ξ in E .
▶ Map x+ ξ back toM. For matrix manifolds, use matrix decompositions.

Example. LetM = Sn−1, then the
retraction at x ∈ Sn−1 is

Rx(ξ) =
x+ ξ
∥x+ ξ∥ ,

defined for all ξ ∈ TxSn−1. Rx(ξ) is
the point on Sn−1 that minimizes the
distance to x+ ξ .

y = Rx(ξ)

TxS2

S2

ξx
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Retractions on the Stiefel manifold
{ Based on matrix decompositions: given a generic matrix A ∈Rn×p

∗ ,

▶ Polar decomposition (∼ polar form of a complex number):

A =UP , with U ∈ St(n,p), P ∈ Ssym+(p).

▶ QR factorization (∼ Gram–Schmidt algorithm):

A =QR, with Q ∈ St(n,p), R ∈ Supp+(p).

Let X ∈ St(n,p) and ξ ∈ TXSt(n,p).

{ Retraction based on the polar decomposition:

RX(ξ) = (X + ξ) (I + ξ⊤ξ)−1/2.

{ Retraction based on the QR factorization:

RX(ξ) = qf(X + ξ),

where qf(A) denotes the Q factor of the QR factorization.
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Line search on a manifold (reprise)

Line-search methods on manifolds are based on the update formula

xk+1 = Rxk (αkpk),

where αk ∈R and pk ∈ TxkM.

Recipe for constructing a line-search
method on a manifold:
▶ Choose a retraction Rxk .
▶ Select a search direction pk .
▶ Select a step length αk (e.g., by

using the Armijo condition).

TxkM

M

αkpk
xk

xk+1 = Rxk (αkpk)

Remark: If pk = −gradf (xk), we get the Riemannian steepest descent.
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Line search on a manifold (reprise)

Algorithm 1: Line-search minimization on manifolds.
Given f : M→R, starting point x0 ∈M;
k← 0;
repeat

choose a descent direction pk ∈ TxkM;
choose a retraction Rxk : TxkM→M;
choose a step length αk ∈R;
set xk+1 = Rxk (αkpk);
k← k +1;

until xk+1 sufficiently minimizes f ;

TxkM

M

αkpk
xk

xk+1 = Rxk (αkpk)
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Parallel transport
▶ Given a Riemannian manifold (M, g) and x, y ∈M, the parallel transport

Px→y : TxM→ TyM is a linear operator that preserves the inner product:

∀ξ,ζ ∈ TxM, ⟨Px→y ξ,Px→y ζ⟩y = ⟨ξ,ζ⟩x.
▲! Caveat:
▶ Computing parallel transports, in

general, requires numerically
solving ODEs.

▶ One needs to choose a curve
connecting x and y explicitly. If
we choose a minimizing geodesic,
this requires computing the
Riemannian logarithm.

x

ξ ζ

γ

Px→yξ

Px→yζ

y

M
TxM

TyM

{ Computing the parallel transport might be too expensive in practice!

▲! Remark: parallel transport with the Levi-Civita connection.
If we use other connections, we get different properties.
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Transporters

▶ Transporter: “poor’s man version of parallel transport”.

▶ No need for a Riemannian connection. If x and y are close enough to one
another, then one can define the linear map Ty←x : TxM→ TyM, with
Tx←x being the identity map.

▶ Useful in defining a Riemannian version of the classical BFGS algorithm.

▶ The differentials of a retraction provide a transporter via Ty←x = DRx(v),
where v = R−1x (y) [Boumal 2022, Prop. 10.64].

▶ For embedded submanifolds of a Euclidean space E , a transporter can be
defined as [Boumal 2022, Prop. 10.66]

Ty←x = PTyM
∣∣∣∣
TxM

,

where PTyM is the orthogonal projector from E to TyM, restricted to TxM.

Transporters: [Boumal 2022, §10.5]
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II. Riemannian BFGS
(§3.1)



Riemannian BFGS quasi-Newton method

▶ Fundamental idea of quasi-Newton methods: instead of computing the
approximate Hessian Bk from scratch at every iteration, we update it by
using the newest information gained during the last iteration.

▶ The search direction pk is chosen as the solution to

Bk(pk , ·) = −Df (xk),

where Bk : TxM×TxM→R is updated according to

sk = αkpk = R−1xk (xk+1), yk = DfRxk
(sk)−DfRxk

(0),

Bk+1(Tkv,Tkw) = Bk(v,w)− Bk(sk ,v)Bk(sk ,w)
Bk(sk , sk)

+
(ykv)(ykw)

yksk
,

∀v,w ∈ TxkM. Here, Tk ≡ Txk ,xk+1 denotes a transporter TxkM→ Txk+1M.

Riemannian BFGS: [Gabay 1982, Brace/Manton 2006, Qi/Gallivan/Absil 2010,
Ring/Wirth 2012, Huang/Gallivan/Absil 2015, Huang/Absil/Gallivan 2016]
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https://link.springer.com/article/10.1007/BF00934767
https://link.springer.com/chapter/10.1007/978-3-642-12598-0_16
https://epubs.siam.org/doi/10.1137/140955483
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Euclidean BFGS vs Riemannian BFGS

Euclidean BFGS
(see notes, §1.1)

Riemannian BFGS

sk = xk+1 − xk ,

yk = ∇fk+1 −∇fk ,

Bk+1sk = yk ,

Bk+1 = Bk −
Bksks

⊤
k Bk

s⊤k Bksk
+
yky
⊤
k

y⊤k sk
.

sk = R−1xk (xk+1),

yk = DfRxk
(sk)−DfRxk

(0),

Bk+1(Tksk , ·) = ykT
−1
k ,

Bk+1(Tkv,Tkw) = Bk(v,w)− Bk(sk ,v)Bk(sk ,w)
Bk(sk , sk)

+
(ykv)(ykw)

yksk
.
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Convergence and convergence rates of Riemannian BFGS
▶ Convergence of BFGS to the optimal value f (x∗) [Prop. 10]:

f (xk)− f (x∗) ≤ µk+1 (f (x0)− f (x∗)) .

▶ Convergence of the iterates of BFGS to x∗ [Cor. 11]:

dist(xk ,x
∗) ≤

√
M
m
√
µk+1dist(x0,x

∗).

▶ Convergence rate of BFGS [Cor. 13]: superlinear convergence, i.e.,

lim
k→∞

dist(xk+1,x∗)
dist(xk ,x∗)

= 0.

Compare with:
Riemannian steepest descent

[Boumal 2022, Thm. 4.20] gives
assumptions for the iterates xk to
converge to a local minimizer x∗

at least linearly.

Riemannian Newton’s method

lim
k→∞

dist(xk+1,x∗)
dist2(xk ,x∗)

≤ C.

[Ring/Wirth 2012, Prop. 7]
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III. Application to image segmentation
on the Stiefel manifold

(§4.2)



Space of smooth closed curves/1

▶ Riemannian optimization in the space of smooth closed curves (§4.2).

▶ Younes et al. represent a curve c : [0,1]→C ≡R
2 by two functions

e, g : [0,1]→R via

c(θ) = c(0) +
1
2

∫ θ

0
(e+ ig)2dθ.

▶ Conditions: closed c(1) = c(0), and of unit length,
∫ 1
0 |c′(θ)| dθ = 1.

{ e and g orthonormal in L2([0,1]), thus (e, g) is an element of

St
(
L2([0,1]), 2

)
=

{
(e, g) ∈ L2([0,1]) : ∥e∥L2([0,1]) = ∥g∥L2([0,1]) = 1, (e,g)L2([0,1]) = 0

}
.

Recall the inner product in L2([0,1]): (e, g)L2([0,1]) B
∫ 1
0 e · ḡ dx,

and the induced norm ∥e∥L2([0,1]) B
√∫ 1

0 |e(x)|2 dx.

[Younes/Michor/Shah/Mumford 2008]
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Space of smooth closed curves/2

▶ Sundaramoorthi et al. represent a general closed curve c by an element
(c0, ρ, (e, g)) of R2 ×R× St

(
L2([0,1]), 2

)
via

c(θ) = c0 +
expρ
2

∫ θ

0
(e+ ig)2dθ.

where c0 is the curve centroid and expρ its length.

▶ Metric:

g[c](h,k) = ht · kt +λℓh
ℓkℓ +λd

∫
[c]

dhd

ds
· dk

d

ds
ds

on the tangent space of curve variations h, k : [c]→R
2, where [c] is the

image of c : [0,1]→R
2, s denotes arclength, and weights λℓ , λd > 0.

▶ There is a closed formula for the exponential map [Sundaramoorthi et
al. 2011].

[Sundaramoorthi/Mennucci/Soatto/Yezzi 2011]
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Objective functional/1

Given a gray scale image u : [0,1]2→R, we would like to minimize the objective
functional

f ([c]) = a1

(∫
int[c]

(ui −u)2dx+
∫
ext[c]

(ue −u)2dx
)
+ a2

∫
[c]
ds,

where a1, a2 > 0, ui and ue are given gray values, and int[c] and ext[c] denote the
interior and exterior of [c].

Meaning:

▶ First two terms: indicate that [c] should enclose the image region where u is
close to ui and far from ue.

▶ Third term: acts as a regularizer and measures the curve length.

Image segmentation via active contours without edges: [Chan/Vese 2001]
Chan-Vese Segmentation in scikit-image
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https://ieeexplore.ieee.org/document/902291
https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_chan_vese.html


Objective functional/2

We interpret the curve c as an element of the manifold R
2 ×R× St

(
L2([0,1]),2

)
and add a term that prefers a uniform curve parametrization:

f (c0, ρ, (e, g)) = a1

(∫
int[(c0, ρ, (e,g))]

(ui −u)2dx+
∫
ext[(c0, ρ, (e,g))]

(ue −u)2dx
)

+ a2 exp(ρ) + a3

∫ 1

0
(e2 + g2)2dθ,

Numerical implementation:

▶ e and g are discretized as piecewise constant functions on a uniform grid
over [0,1].

▶ The image u is given as pixel values on a uniform grid.
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Numerical experiments/1

▶ Right column: geodesic retractions based on the matrix exponential [Sundaramoorthi
et al. 2011].
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Numerical experiments/2

▶ Experiments for different weights λℓ and λd inside the metric

g[c](h,k) = ht · kt +λℓh
ℓkℓ +λd

∫
[c]

dhd

ds
· dk

d

ds
ds.

▶ A larger λd (top row) ensures a good curve positioning and scaling before
starting major deformations. A small λd has a reverse effect (bottom row).

▶ The ratio between λd and λd /λℓ decides whether the scaling or the
positioning is adjusted first.

λd = 16

λd = 1

λd /λℓ = 16 λd /λℓ = 1
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Numerical experiments/3

▶ Active contour segmentation on the widely used cameraman image.
▶ The iteration was stopped as soon as the derivative of the discretized objective

functional f reached an ℓ2-norm less than 10−2.
▶ In the top row, BFGS needed 46 steps, while gradient descent needed 8325 steps.
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Conclusions

Pros and cons:

+ Solid, quite well-understood mathematical theory behind.

− Cannot deal with self-intersecting curves.

This talk:

▶ Fundamental ideas and tools of Riemannian geometry that we use in
optimization on Riemannian manifolds.

▶ Riemannian BFGS [Ring/Wirth 2012, §3.1].

▶ Application to image segmentation [Ring/Wirth 2012, §4.2].

{ Download slides: marcosutti.net/research.html#talks
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IV. Bonus material



Geodesics

▶ Generalization of straight lines to manifolds.

▶ Locally they are curves of shortest length, but globally they may not be.

▶ In general, they are defined as critical points of the length functional L[γ],
and may or may not be minima.

X

Y

▶ The fundamental Hopf–Rinow theorem guarantees the existence of a
length-minimizing geodesic connecting any two given points.



Hopf–Rinow Theorem

Theorem ([Hopf/Rinow]) Let (M, g) be a (connected) Riemannian manifold.
Then the following conditions are equivalent:
1. Closed and bounded subsets ofM are compact;
2. (M, g) is a complete metric space;
3. (M, g) is geodesically complete, i.e., for any x ∈M, the exponential map

Expx is defined on the entire tangent space TxM.

Any of the above implies that given any two points x, y ∈M, there exists a
length-minimizing geodesic connecting these two points.

The Stiefel manifold is compact/complete/geodesically complete.

{ Length-minimizing geodesics exist.

Riemannian Geometry, Sakai 1992



The orthogonal group as a special case of St(n,p)

▶ If p = n, then the Stiefel manifold reduces to the orthogonal group

O(n) = {X ∈Rn×n : X⊤X = In},
and the tangent space at X is given by

TXO(n) = {XΩ : Ω⊤ = −Ω} = XSskew(n).

▶ Furthermore, at X = In, we have TInO(n) = Sskew(n), i.e., the tangent space
to O(n) at the identity matrix In is the set of skew-symmetric n-by-n
matrices Sskew(n). In the language of Lie groups, we say that Sskew(n) is the
Lie algebra of the Lie group O(n).



An analogy

Theory:

Riemannian exponential

Parallel transport

{

{

{

Algorithm:

Retractions

Transporters


