An efficient preconditioner for the Riemannian trust-region method on the manifold of fixed-rank matrices

Marco Sutti

National Center for Theoretical Sciences
Taipei, Taiwan

ICIAM 2023, Waseda University, Tokyo
August 25, 2023

Overview

Preprint: Implicit low-rank Riemannian schemes for the time integration of stiff partial differential equations, M. Sutti and B. Vandereycken, submitted, arXiv preprint arXiv:2305.11532.

Contributions:
> Preconditioner for the RTR method on the manifold of fixed-rank matrices.

- Applications within implicit numerical integration schemes to solve stiff, time-dependent PDEs.

This talk:
I. Optimization on matrix manifolds.
II. The manifold of fixed-rank matrices.
III. Preconditioner.
IV. Numerical application.

Optimization problems on matrix manifolds

- We can state the optimization problem as

$$
\min _{x \in \mathcal{M}} f(x),
$$

where $f: \mathcal{M} \rightarrow \mathbb{R}$ is the objective
 function and \mathcal{M} is some matrix manifold.
$>$ Matrix manifold: any manifold that is constructed from $\mathbb{R}^{n \times p}$ by taking either embedded submanifolds or quotient manifolds.

- Examples of embedded submanifolds: orthogonal Stiefel manifold, manifold of symplectic matrices, manifold of fixed-rank matrices, ...
- Example of quotient manifold: the Grassmann manifold.
- Motivation: by exploiting the underlying geometric structure, only feasible points are considered!

Problems considered: variational problems

- Variational problem, called "LYAP" herein,

$$
\left\{\begin{aligned}
\min _{w} \mathcal{F}(w(x, y)) & =\int_{\Omega} \frac{1}{2}\|\nabla w(x, y)\|^{2}-\gamma(x, y) w(x, y) \mathrm{d} x \mathrm{~d} y \\
\text { such that } \quad w & =0 \text { on } \partial \Omega
\end{aligned}\right.
$$

where $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right), \Omega=[0,1]^{2}$ and γ is the source term.
$>$ Discretization on a uniform grid: regardless of the specific form of \mathcal{F}, we obtain the general formulation

$$
\min _{W} F(W) \quad \text { s.t. } \quad W \in\left\{X \in \mathbb{R}^{n \times n}: \operatorname{rank}(X)=r\right\},
$$

where F denotes the discretization of the functional \mathcal{F}.

[^0]
Riemannian manifold and gradient

A manifold \mathcal{M} endowed with a smoothly-varying inner product (called Riemannian metric g) is called Riemannian manifold.
\leadsto A couple (\mathcal{M}, g), i.e., a manifold with a Riemannian metric on it.
Let $f: \mathcal{M} \rightarrow \mathbb{R}$. E.g., the objective function in an optimization problem.
\leadsto For any embedded submanifold:

- Riemannian gradient: projection onto $\mathrm{T}_{X} \mathcal{M}$ of the Euclidean gradient

$$
\operatorname{grad} f(X)=\mathrm{P}_{\mathrm{T}_{X} \mathcal{M}}(\nabla f(X))
$$

$\leadsto \nabla f(X)$ is the Euclidean gradient of $f(X)$.
Matrix and vector calculus: The Matrix Cookbook, www.matrixcalculus.org, ... Automatic differentiation on low-rank manifolds: [Novikov/Rakhuba/Oseledets 2022]

The manifold of fixed-rank matrices

- Our optimization problem is defined over

$$
\mathcal{M}_{r}=\left\{X \in \mathbb{R}^{n \times n}: \operatorname{rank}(X)=r\right\} .
$$

$\leadsto \mathcal{M}_{r}$ has a smooth structure ...
2×2 example:

$$
X=\left[\begin{array}{cc}
x & -2 y \\
y & z
\end{array}\right]
$$

Parametrization:
$\operatorname{rank}(X)=1 \Leftrightarrow x z=-2 y^{2}$ and $x, z \neq 0$.

- Theorem: \mathcal{M}_{r} is a smooth Riemannian submanifold embedded in $\mathbb{R}^{n \times n}$ of dimension $r(2 n-r)$.

Alternative characterization

$>$ Using the singular value decomposition (SVD), we have the equivalent characterization

$$
\mathcal{M}_{r}=\left\{U \Sigma V^{\top}: U^{\top} U=I_{r}, V^{\top} V=I_{r}, \Sigma=\operatorname{diag}\left(\sigma_{i}\right), \sigma_{1} \geqslant \cdots \geqslant \sigma_{r}>0\right\} .
$$

$>$ Only $2 n r+r$ coefficients instead of n^{2}. If $r \ll n$, then big memory savings.
$>$ Perform the calculations directly in the factorized format.

Riemannian Hessian and preconditioning $/ 1$

- In the case of Riemannian submanifolds, the full Riemannian Hessian of f at $x \in \mathcal{M}$ is given by the projected Euclidean Hessian plus the curvature part

Hess $f(x)[\xi]=P_{x} \nabla^{2} f(x) P_{x}+P_{x}\left(\right.$ "curvature terms") P_{x}.
\leadsto Use $P_{x} \nabla^{2} f(x) P_{x}$ as a preconditioner in RTR.

- For LYAP, we can get the symmetric $n^{2}-$ by $-n^{2}$ matrix

$$
H_{X}=P_{X}(A \otimes I+I \otimes A) P_{X}
$$

> Inverse of $H_{X} \leadsto$ good candidate for a preconditioner.
! Not inverted directly, since this would $\operatorname{cost} \mathcal{O}\left(n^{6}\right)$.
A good preconditioner should reduce the number of iterations of the inner trust-region solver. It has to be effective and cheap to compute.

Riemannian Hessian and preconditioning/2

- Applying the preconditioner in $X \in \mathcal{M}_{r}$ means solving for $\xi \in \mathrm{T}_{X} \mathcal{M}$ the system

$$
H_{X} \operatorname{vec}(\xi)=\operatorname{vec}(\eta),
$$

where $\eta \in \mathrm{T}_{X} \mathcal{M}$ is a known tangent vector.

- This is equivalent to

$$
\mathrm{P}_{X}(A \xi+\xi A)=\eta .
$$

- Using the definition of the orthogonal projector onto $\mathrm{T}_{X} \mathcal{M}_{r}$, we obtain

$$
P_{U}(A \xi+\xi A) P_{V}+P_{U}^{\perp}(A \xi+\xi A) P_{V}+P_{U}(A \xi+\xi A) P_{V}^{\perp}=\eta
$$

which is equivalent to the system

$$
\left\{\begin{array}{l}
P_{U}(A \xi+\xi A) P_{V}=P_{U} \eta P_{V}, \\
P_{U}^{\perp}(A \xi+\xi A) P_{V}=P_{U}^{\perp} \eta P_{V}, \\
P_{U}(A \xi+\xi A) P_{V}^{\perp}=P_{U} \eta P_{V}^{\perp}
\end{array}\right.
$$

\leadsto Many (tedious) calculations, but the numerical results are pretty striking!

"LYAP" variational problem

Table: Effect of preconditioning: dependence on size for LYAP.

			Rank 5										
Prec.	size	10	11	12	13	14	15	10	11	12	13	14	15
No	$n_{\text {outer }}$	51	54	61	59	162	92	300	103	61	63	62	59
	$\sum n_{\text {inner }}$	4561	9431	21066	36556	30069	30096	27867	30025	33818	45760	44467	38392
	max $n_{\text {inner }}$	1801	3191	7055	9404	1194	1851	2974	3385	8894	24367	24537	25013
Yes	$n_{\text {outer }}$	41	45	50	52	56	60	44	64	62	53	56	56
	$\sum n_{\text {inner }}$	44	45	50	52	56	60	69	104	82	60	69	56
	$\max n_{\text {inner }}$	4	1	1	1	1	1	9	9	8	8	8	1

$>$ Stopping criterion: maximum number of outer iterations $n_{\max \text { outer }}=300$. The inner solver is stopped when $\sum n_{\text {inner }}$ first exceeds 30000 .

- Impressive reduction in the number of iterations of the inner solver.
$>n_{\text {outer }}$ and $\sum n_{\text {inner }}$ depend (quite mildly) on size, while max $n_{\text {inner }}$ is basically constant.

Allen-Cahn equation/1

$>$ Reaction-diffusion equation that models the process of phase separation in multi-component alloy systems.

- Other applications include: mean curvature flows, two-phase incompressible fluids, complex dynamics of dendritic growth, and image segmentation ...
- In its simplest form, it reads

$$
\frac{\partial w}{\partial t}=\varepsilon \Delta w+w-w^{3}
$$

- It is a stiff, time-dependent PDE.

(a) $t=0$

(b) $t=0.5$

(c) $t=2$

(f) $t=15$

Figure: Time evolution of the solution w to the Allen-Cahn equation, with ERK4, $h=10^{-4}$.

Allen-Cahn equation/2-low-rank evolution

- We build the functional

$$
\min _{w} \mathcal{F}(w):=\int_{\Omega} \frac{\varepsilon h}{2}\|\nabla w\|^{2}+\frac{(1-h)}{2} w^{2}+\frac{h}{4} w^{4}-\widetilde{w} \cdot w \mathrm{~d} x \mathrm{~d} y
$$

(a)

(b)

Figure: Panel (a): error versus time for the preconditioned low-rank evolution of the Allen-Cahn equation. Panel (b): error at $T=15$ versus time step h.

Conclusions

Pros and cons:

\oplus Efficient preconditioner on the manifold of fixed-rank matrices.
\oplus Solid, quite well-understood mathematical theory behind.

- If the problem does not admit a low-rank representation, then there is no advantage over using dense matrices.

Outlook:

$>$ Go to higher-order numerical integration methods.

- Other applications in mind, e.g., diffusion problems in mathematical biology or problems with low-rank tensor structure.

Thank you for your attention!
 Questions?

Bonus material

Metric, projection, gradient, retraction

- The Riemannian metric is

$$
g_{X}(\xi, \eta)=\langle\xi, \eta\rangle=\operatorname{Tr}\left(\xi^{\top} \eta\right), \quad \text { with } \quad X \in \mathcal{M}_{r} \quad \text { and } \quad \xi, \eta \in \mathrm{T}_{X} \mathcal{M}_{r},
$$ where ξ, η are seen as matrices in the ambient space $\mathbb{R}^{n \times n}$.

- Orthogonal projection onto the tangent space at X is

$$
\mathrm{P}_{\mathrm{T}_{X} \mathcal{M}_{r}}: \mathbb{R}^{n \times n} \rightarrow \mathrm{~T}_{X} \mathcal{M}_{r}, \quad Z \rightarrow \mathrm{P}_{U} Z \mathrm{P}_{V}+\mathrm{P}_{U}^{\perp} Z \mathrm{P}_{V}+\mathrm{P}_{U} Z \mathrm{P}_{V}^{\perp}
$$

- Riemannian gradient: projection onto $\mathrm{T}_{X} \mathcal{M}_{r}$ of the Euclidean gradient

$$
\operatorname{grad} f(X)=\mathrm{P}_{\mathrm{T}_{X} \mathcal{M}_{r}}(\nabla f(X))
$$

- Retraction $\mathrm{R}_{X}: \mathrm{T}_{X} \mathcal{M}_{r} \rightarrow \mathcal{M}_{r}$. Typical: truncated SVD.

Retractions

$>$ Move in the direction of ξ while remaining constrained to \mathcal{M}.
Smooth mapping $\mathrm{R}_{x}: \mathrm{T}_{x} \mathcal{M} \rightarrow \mathcal{M}$ with a local condition that preserves gradients at x.

- The Riemannian exponential mapping is also a retraction, but it is not computationally efficient.
> Retractions: first-order approximation of the Riemannian exponential!

Riemannian trust-region (RTR) method

```
Algorithm 1: Riemannian trust-region (RTR)
\({ }_{1}\) Given \(\bar{\Delta}>0, \Delta_{1} \in(0, \bar{\Delta})\)
for \(i=1,2, \ldots\) do
    Define the second-order model
\[
m_{i}: \mathrm{T}_{x_{i}} \mathcal{M} \rightarrow \mathbb{R}, \xi \mapsto f\left(x_{i}\right)+\left\langle\operatorname{grad} f\left(x_{i}\right), \xi\right\rangle+\frac{1}{2}\left\langle\operatorname{Hess} f\left(x_{i}\right)[\xi], \xi\right\rangle
\]
```

Trust-region subproblem: compute η_{i} by solving

$$
\eta_{i}=\operatorname{argmin} m_{i}(\xi) \quad \text { s.t. } \quad\|\xi\| \leq \Delta_{i} .
$$

Compute $\rho_{i}=\left(\widehat{f}(0)-\widehat{f_{i}}\left(\eta_{i}\right)\right) /\left(m_{i}(0)-m_{i}\left(\eta_{i}\right)\right)$.
if $\rho_{i} \geq 0.05$ then
Accept step and set $x_{i+1}=\mathrm{R}_{x_{i}}\left(\eta_{i}\right)$.
else
Reject step and set $x_{i+1}=x_{i}$.
end if
Radius update: set

$$
\Delta_{i+1}= \begin{cases}\min \left(2 \Delta_{i}, \bar{\Delta}\right) & \text { if } \rho_{i} \geq 0.75 \text { and }\left\|\eta_{i}\right\|=\Delta_{i} \\ 0.25\left\|\eta_{i}\right\| & \text { if } \rho_{i} \leq 0.25 \\ \Delta_{i} & \text { otherwise }\end{cases}
$$

end for

An example of factorized gradient

$>$ "LYAP" functional: $\mathcal{F}(w(x, y))=\int_{\Omega} \frac{1}{2}\|\nabla w(x, y)\|^{2}-\gamma(x, y) w(x, y) \mathrm{d} x \mathrm{~d} y$.
$>$ The gradient of \mathcal{F} is the variational derivative $\frac{\delta \mathcal{F}}{\delta w}=-\Delta w-\gamma$.

- The discretized Euclidean gradient in matrix form is given by

$$
G=A W+W A-\Gamma
$$

with A is the second-order periodic finite difference differentiation matrix.

- The first-order optimality condition $G=A W+W A-\Gamma=0$ is a Lyapunov (or Sylvester) equation.
\leadsto Factorized Euclidean gradient:

Tangent vectors

- A tangent vector ξ at $X=U \Sigma V^{\top}$ is represented as

$$
\begin{gathered}
\xi=U M V^{\top}+U_{p} V^{\top}+U V_{p}^{\top}, \\
M \in \mathbb{R}^{r \times r}, \quad U_{p} \in \mathbb{R}^{n \times r}, \quad U_{p}^{\top} U=0, \quad V_{p} \in \mathbb{R}^{n \times r}, \quad V_{p}^{\top} V=0 .
\end{gathered}
$$

- We can rewrite it as

$$
\xi=\left(U M+U_{p}\right) V^{\top}+U V_{p}^{\top} .
$$

$\leadsto \xi$ is a rank- $2 r$ bounded matrix. Useful in implementation.

[^0]: "LYAP" variational problem: [Henson 2003, Gratton/Sartenaer/Toint 2008, Wen/Goldfarb 2009, S./Vandereycken 2021, ...]

