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Overview

Preprint: Implicit low-rank Riemannian schemes for the time integration of stiff
partial differential equations, M. Sutti and B. Vandereycken, submitted, arXiv
preprint arXiv:2305.11532.

Talk at Waseda University, August 25.

Contributions:

» Preconditioner for the Riemannian trust-region (RTR) method on the
manifold of fixed-rank matrices.

» Applications within implicit numerical integration schemes to solve stiff,
time-dependent PDEs.

This talk:
. Optimization on matrix manifolds, fundamental ideas and tools.
II. The manifold of fixed-rank matrices.
III. Preconditioner, outline of derivation.

IV. Numerical experiments.
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https://arxiv.org/abs/2305.11532
https://arxiv.org/abs/2305.11532
https://iciam2023.org/registered_data?id=02053

I. Optimization on matrix manifolds



Optimization problems on matrix manifolds

> We can state the optimization
problem as

g;iﬂgf (x),

where f: M — R is the objective
function and M is some matrix
manifold.

> Matrix manifold: any manifold that is constructed from R™*P by taking
either embedded submanifolds or quotient manifolds.

» Examples of embedded submanifolds: orthogonal Stiefel manifold, manifold of
symplectic matrices, manifold of fixed-rank matrices, ...

» Example of quotient manifold: the Grassmann manifold.

> Motivation: by exploiting the underlying geometric structure, only feasible
points are considered!

Manifold optimization: [Edelman et al. 1998, Absil et al. 2008, Boumal 2023], ...
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https://epubs.siam.org/doi/10.1137/S0895479895290954
https://press.princeton.edu/absil
https://www.cambridge.org/core/books/an-introduction-to-optimization-on-smooth-manifolds/EAF2B35457B7034AC747188DC2FFC058

Problems considered: variational problems

» Variational problem, called “LYAP” herein,

mu%n]-'(w(x,y)) = J;) %Ile(x,y)ll2 -y(x,v)w(x,v)dxdy
such that w =0 on dQ,
_(d 2 _ 2 :
where V = (E’ a—y), Q =[0,1]* and v is the source term.

» Discretization on a uniform grid: regardless of the specific form of F, we
obtain the general formulation

mMiInF(W) st. We{XeR": rank(X)=r},

where F denotes the discretization of the functional F.

“LYAP” variational problem: [Henson 2003, Gratton/Sartenaer/Toint 2008,
Wen/Goldfarb 2009, S./Vandereycken 2021, ...]
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https://www.osti.gov/servlets/purl/15002749
https://epubs.siam.org/doi/10.1137/050623012
https://epubs.siam.org/doi/10.1137/08071524X
https://epubs.siam.org/doi/10.1137/20M1337430

Riemannian manifold and gradient

A manifold M endowed with a smoothly-varying inner product (called
Riemannian metric g) is called Riemannian manifold.

~> A couple (M, g), i.e., a manifold with a Riemannian metric on it.

Let f: M — R. E.g., the objective function in an optimization problem.

~» For any embedded submanifold:

» Riemannian gradient: projection
onto Ty M of the Fuclidean
gradient

grad f(X) = Pt pm(V /(X))

~> Vf(X)1is the Euclidean gradient of f(X).

Matrix and vector calculus: The Matrix Cookbook, www.matrixcalculus.org, ...

Automatic differentiation on low-rank manifolds: [Novikov/Rakhuba/Oseledets 2022]
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https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.matrixcalculus.org
https://epubs.siam.org/doi/10.1137/20M1356774

Riemannian trust-region (RTR) method

Algorithm 1: Riemannian trust-region (RTR)
1 Given A>0,A; € (O,A_)
2 fori=1,2,... do
3 Define the second-order model

s Ty M= R, € o £ grad f (3, €+ (Fess f ()], €).

4 Trust-region subproblem: compute 7; by solving

i = argminm;(€) st €] <A

5 | Compute p; = (f(0) = fi(17;))/(m;(0) — m;(1;))-
6 if p; > 0.05 then
7 ‘ Accept step and set x;,; = Ry, (77;).
8 else
9 ‘ Reject step and set x;,1 = ;.
10 end if
1 Radius update: set
min(24;,4) if p; > 0.75 and ||n;]| = 4;,
Aip1 =10.25]|1l if p; <0.25,
A; otherwise.
12 end for

TR method: [Goldfeld/Quandt/Trotter 1966, Sorensen 1982, Fletcher 1980/1987 ...]
RTR method: [Absil/Baker/Gallivan 2007]
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https://www.jstor.org/stable/1909768
https://digital.library.unt.edu/ark:/67531/metadc283479/
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118723203
https://link.springer.com/article/10.1007/s10208-005-0179-9

II. The manifold of fixed-rank matrices



The manifold of fixed-rank matrices

» Our optimization problem is defined over

M, ={X e R”": rank(X) = r}.

~> M, has a smooth structure ...

2 x 2 example:

_|x %
e [? z ] ’
Parametrization:
rank(X) = 1 & xz=-2y? and

x,z#0.

; R
T Y

» Theorem: M, is a smooth Riemannian submanifold embedded in R™" of
dimension r(2n —r).

Optimizing on submanifold M,: [Vandereycken 2013]
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https://epubs.siam.org/doi/10.1137/110845768

Alternative characterization

» Using the singular value decomposition (SVD), we have the equivalent
characterization

M, ={UXVT: U'U=1, V'V =1, X=diag(o;), 01 >--->0,>0}.

n T T n
N
b))

» Only 217 + r coefficients instead of n?. If r < n, then big memory savings.

» Perform the calculations directly in the factorized format.
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III. Riemannian preconditioning



Riemannian Hessian and preconditioning/1

» In the case of Riemannian submanifolds, the full Riemannian Hessian of f at
x € M is given by the projected Euclidean Hessian plus the curvature part

Hess f (x)[£] = P, V2 f(x) P, + P (“curvature terms”) P,.
~> Use P, V?f(x) P, as a preconditioner in RTR.
> For LYAP, we can get the symmetric 1n%-by-n? matrix

HX = Px(A®I+I®A)PX

» Inverse of Hy ~» good candidate for a preconditioner.
A\ Not inverted directly, since this would cost O(1°).

» A good preconditioner should reduce the number of iterations of the inner
trust-region solver. It has to be effective and cheap to compute.

Symmetric positive semidefinite matrices with fixed rank: [Vandereycken/Vandewalle 2010]
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https://epubs.siam.org/doi/10.1137/090764566

Riemannian Hessian and preconditioning/2

> Applying the preconditioner in X € M, means solving for £ € Tx M the
system
Hy vec(£) = vec(r),

where 77 € Tx M is a known tangent vector.
» This is equivalent to
Px(AE+EA)=1.
» Using the definition of the orthogonal projector onto Tx M, , we obtain
Py(A& + EA)Py + P (AE + EA)Py + Py(AE + EA)PF =1,
which is equivalent to the system
Py(A&+EA)Py = PynPy,

PH(AE + EA)Py = PEyiPy,
Py(AE + EA)PE = Pyn Py

~»> Many (boring) calculations, but the numerical results are quite striking!
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IV. Numerical experiments



“LYAP” variational problem

Table: Effect of preconditioning: dependence on size for LYAP.

Rank 5 Rank 10
Prec. | size | 10 11 12 13 14 15 | 10 11 12 13 14 15
Houter 51 54 61 59 162 92 | 300 103 61 63 62 59
No Minner | 4561 9431 21066 36556 30069 30096 | 27867 30025 33818 45760 44467 38392
maXfinner | 1801 3191 7055 9404 1194 1851 | 2974 3385 8894 24367 24537 25013
Houter 41 45 50 52 56 60 44 64 62 53 56 56
Yes | Yitiner | 44 45 50 52 56 60 69 104 82 60 69 56

» Stopping criterion: maximum number of outer iterations 1,4 guter = 300.

The inner solver is stopped when ) #1j,¢, first exceeds 30 000.

» Impressive reduction in the number of iterations of the inner solver.

> Nouter and ) 106, depend (quite mildly) on size, while
basically constant.

is
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Allen-Cahn equation/1
» Reaction-diffusion equation that models the process of phase separation in
multi-component alloy systems.

» Other applications include: mean curvature flows, two-phase incompressible
fluids, complex dynamics of dendritic growth, and image segmentation ...

» In its simplest form, it reads

0
v = eAw+w-wd.
ot

> It is a stiff, time-dependent PDE.

0m g

@t=0 (b)t=0.5 (ot=2 f)t=15

Figure: Time evolution of the solution w to the Allen-Cahn equation, with ERK4, h = 1074,

Allen-Cahn equation: [Allen/Cahn 1972, Allen/Cahn 1973]
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https://www.sciencedirect.com/science/article/pii/0001616072900375
https://www.sciencedirect.com/science/article/pii/0036974873900732

Allen-Cahn equation/2 - low-rank evolution

» We build the functional
h) h

1-
[ S+ 5w s bt - wdray,

min F(w) = 5

o

0)
|[wr — wret 1 Hu(n)

flw — wiet |

—@—error
—— o

(b)

(@)
Figure: Panel (a): error versus time for the preconditioned low-rank evolution of the
Allen-Cahn equation. Panel (b): error at T = 15 versus time step h.
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Fisher-KPP equation/1

» Nonlinear reaction-diffusion equation.

> Models biological population, chemical reaction dynamics with diffusion, theory
of combustion to study flame propagation, nuclear reactors ...

» In its simplest form, it reads
ow Jw
E = W + r(a))w(l —'LV),
where w = w(x, t; w), r(w) is a species’s reaction rate or growth rate,
modeled as a random variable that follows a uniform law r ~ U/ [1/4,1/2].

> Spatial domain: x € [0,40], time domain: ¢ € [0,10].

» Homogeneous Neumann boundary conditions, i.e.,

Vte[0,10], aa—Z(o, t)=0, %(40, t)=0.

Fisher-KPP equation: [Fisher 1937, Kolmogorov/Petrowsky/Piskunov 1937]
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https://www.sciencedirect.com
https://www.sciencedirect.com

Fisher-KPP equation/2

» The initial condition is of the form
w(x, 0;w) = a(w)e‘b(“’)xz,

where a ~U[1/5, 2/5] and b ~ U [1/10, 11/10]. The random variables a4, b,

and r are all independent, and we consider N, = 1000 realizations.

numerical rank of Wexer

(@) (b) (©)

Figure: Fisher—KPP reference solution computed with an IMEX-CNLF scheme. Panel (a): all
the 1000 realizations at t = 0. Panel (b): all the 1000 realizations at ¢ = 10. Panel (c):
numerical rank history.
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Fisher-KPP equation/3 - low-rank evolution
» We build the objective function

1 2
p(n+1)(w): Z
2

‘me ~ MWD 4 2 ((W<'1>)°2 - W(”))Rw

F

24+

2\ 107}

20 -

3
-
-
-

1078

numerical rank of W
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@ (b)
Figure: Panel (a): rank history for the preconditioned low-rank version (LR-CNLF)

compared to the reference solution (CNLF), for & = 0.00625. Panel (b): discrete L2-norm of

the error versus time, for several h.
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Conclusions

Pros and cons:

@ Efficient preconditioner on the manifold of fixed-rank matrices.
@ Solid, quite well-understood mathematical theory behind.

@ If the problem does not really have a low-rank representation, then there is
no advantage over using dense matrices.

Outlook:
> Package the code and make it available on GitHub.
» Use higher-order numerical integration methods.

» Other applications in mind, e.g., diffusion problems in mathematical biology
or problems with low-rank tensor structure.

Thank you for your attention!
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V. Bonus material



Retractions

> Move in the direction of & while remaining constrained to M.

» Smooth mapping R, : T, M — M with a local condition that preserves
gradients at x.

» The Riemannian exponential mapping is also a retraction, but it is not
computationally efficient.

» Retractions: first-order approximation of the Riemannian exponential!

Constructing retractions: [Absil/Malick 2012]


https://epubs.siam.org/doi/10.1137/100802529

M,: Tangent vectors

> A tangent vector & at X = UXVT is represented as
E=UMVT + UpVT + UVPT,
MeR™, U,eR™, U;—U =0, V,eR"™, VPTV =0.
> We can rewrite it as
E=(UM+ UP)VT + UVpT.

~» & is a rank-2r bounded matrix. Useful in implementation.



v

v

: Metric, projection, gradient, retraction

The Riemannian metric is

gx(&,m)=(&Eny=Tr(ETy), with XeM, and &,1eTxM,,

where &, 17 are seen as matrices in the ambient space R™*".

Orthogonal projection onto the tangent space at X is

PTXM,:]RHXH_)TXMW Z—>PUZP\/+Pi}va+PUzPJ‘}

Riemannian gradient: projection onto Tx M, of the
grad f(X) = Pryu, ( ).

Retraction Ry : Ty M, — M,. Typical: truncated SVD.

Many retractions for M,: [Absil/Oseledets 2015]


https://link.springer.com/article/10.1007/s10589-014-9714-4

An example of factorized gradient
> “LYAP” functional: F (w( JQ 2||Vw X, )||2 y(xv)w(x,y)dxdy.

> The gradient of F is the variational derlvatlve =-Aw-y.
» The discretized Euclidean gradient in matrix form is given by

G=AW+WA-T.

with A is the second-order periodic finite difference differentiation matrix.

» The first-order optimality condition G = AW + WA —I" = 0 is a Lyapunov
(or Sylvester) equation.

~> Factorized Euclidean gradient:

=[AU U U] bldiag(x, £, 3,) [V AV v, ]




