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Overview
Preprint: Implicit low-rank Riemannian schemes for the time integration of stiff
partial differential equations, M. Sutti and B. Vandereycken, submitted, arXiv
preprint arXiv:2305.11532.

Talk at Waseda University, August 25.

Contributions:

▶ Preconditioner for the Riemannian trust-region (RTR) method on the
manifold of fixed-rank matrices.

▶ Applications within implicit numerical integration schemes to solve stiff,
time-dependent PDEs.

This talk:

I. Optimization on matrix manifolds, fundamental ideas and tools.

II. The manifold of fixed-rank matrices.

III. Preconditioner, outline of derivation.

IV. Numerical experiments.
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https://arxiv.org/abs/2305.11532
https://arxiv.org/abs/2305.11532
https://iciam2023.org/registered_data?id=02053


I. Optimization on matrix manifolds



Optimization problems on matrix manifolds

▶ We can state the optimization
problem as

min
x∈M

f (x),

where f : M→R is the objective
function andM is some matrix
manifold.

M

x

▶ Matrix manifold: any manifold that is constructed from R
n×p by taking

either embedded submanifolds or quotient manifolds.

▶ Examples of embedded submanifolds: orthogonal Stiefel manifold, manifold of
symplectic matrices, manifold of fixed-rank matrices, . . .

▶ Example of quotient manifold: the Grassmann manifold.

▶ Motivation: by exploiting the underlying geometric structure, only feasible
points are considered!

Manifold optimization: [Edelman et al. 1998, Absil et al. 2008, Boumal 2023], . . .
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https://epubs.siam.org/doi/10.1137/S0895479895290954
https://press.princeton.edu/absil
https://www.cambridge.org/core/books/an-introduction-to-optimization-on-smooth-manifolds/EAF2B35457B7034AC747188DC2FFC058


Problems considered: variational problems

▶ Variational problem, called “LYAP” herein,min
w
F (w(x,y)) =

∫
Ω

1
2∥∇w(x,y)∥2 −γ(x,y)w(x,y)dxdy

such that w = 0 on ∂Ω,

where ∇ =
(
∂
∂x ,

∂
∂y

)
,Ω = [0,1]2 and γ is the source term.

▶ Discretization on a uniform grid: regardless of the specific form of F , we
obtain the general formulation

min
W

F(W ) s.t. W ∈ {X ∈Rn×n : rank(X) = r},

where F denotes the discretization of the functional F .

“LYAP” variational problem: [Henson 2003, Gratton/Sartenaer/Toint 2008,
Wen/Goldfarb 2009, S./Vandereycken 2021, . . . ]
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https://www.osti.gov/servlets/purl/15002749
https://epubs.siam.org/doi/10.1137/050623012
https://epubs.siam.org/doi/10.1137/08071524X
https://epubs.siam.org/doi/10.1137/20M1337430


Riemannian manifold and gradient

A manifoldM endowed with a smoothly-varying inner product (called
Riemannian metric g) is called Riemannian manifold.

{ A couple (M, g), i.e., a manifold with a Riemannian metric on it.

Let f : M→R. E.g., the objective function in an optimization problem.

{ For any embedded submanifold:

▶ Riemannian gradient: projection
onto TXM of the Euclidean
gradient

gradf (X) = PTXM(∇f (X)).

TXM

M

X

∇f (X)

gradf (X)

{ ∇f (X) is the Euclidean gradient of f (X).

Matrix and vector calculus: The Matrix Cookbook, www.matrixcalculus.org, . . .
Automatic differentiation on low-rank manifolds: [Novikov/Rakhuba/Oseledets 2022]
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https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.matrixcalculus.org
https://epubs.siam.org/doi/10.1137/20M1356774


Riemannian trust-region (RTR) method
Algorithm 1: Riemannian trust-region (RTR)

1 Given ∆̄ > 0, ∆1 ∈ (0, ∆̄)
2 for i = 1,2, . . . do
3 Define the second-order model

mi : TxiM→R, ξ 7→ f (xi)+
〈
gradf (xi),ξ

〉
+
1
2
〈
Hessf (xi)[ξ],ξ

〉
.

4 Trust-region subproblem: compute ηi by solving

ηi = argminmi(ξ) s.t. ∥ξ∥ ≤ ∆i .

5 Compute ρi = (f̂ (0)− f̂i(ηi))/(mi(0)−mi(ηi)).
6 if ρi ≥ 0.05 then
7 Accept step and set xi+1 = Rxi (ηi).
8 else
9 Reject step and set xi+1 = xi .

10 end if
11 Radius update: set

∆i+1 =


min(2∆i , ∆̄) if ρi ≥ 0.75 and ∥ηi∥ = ∆i ,

0.25∥ηi∥ if ρi ≤ 0.25,
∆i otherwise.

12 end for

TxM

M

ξ

x

Rx(ξ)

TR method: [Goldfeld/Quandt/Trotter 1966, Sorensen 1982, Fletcher 1980/1987 . . . ]
RTR method: [Absil/Baker/Gallivan 2007]
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https://www.jstor.org/stable/1909768
https://digital.library.unt.edu/ark:/67531/metadc283479/
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118723203
https://link.springer.com/article/10.1007/s10208-005-0179-9


II. The manifold of fixed-rank matrices



The manifold of fixed-rank matrices

▶ Our optimization problem is defined over

Mr = {X ∈Rn×n : rank(X) = r}.

{Mr has a smooth structure . . .

2× 2 example:

X =
[
x −2y
y z

]
.

Parametrization:
rank(X) = 1⇔ xz = −2y2 and
x,z , 0.

▶ Theorem:Mr is a smooth Riemannian submanifold embedded in R
n×n of

dimension r(2n− r).

Optimizing on submanifoldMr : [Vandereycken 2013]
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https://epubs.siam.org/doi/10.1137/110845768


Alternative characterization

▶ Using the singular value decomposition (SVD), we have the equivalent
characterization

Mr = {UΣV ⊤ : U⊤U = Ir , V
⊤V = Ir , Σ = diag(σi), σ1 ⩾ · · · ⩾ σr > 0}.

Σ

U

V
T

r n

X

n

n = n

r

r r

▶ Only 2nr + r coefficients instead of n2. If r ≪ n, then big memory savings.

▶ Perform the calculations directly in the factorized format.

10 / 21



III. Riemannian preconditioning



Riemannian Hessian and preconditioning/1

▶ In the case of Riemannian submanifolds, the full Riemannian Hessian of f at
x ∈M is given by the projected Euclidean Hessian plus the curvature part

Hessf (x)[ξ] = Px∇2f (x)Px + Px (“curvature terms”)Px.

{ Use Px∇2f (x)Px as a preconditioner in RTR.

▶ For LYAP, we can get the symmetric n2-by-n2 matrix

HX = PX(A⊗ I + I ⊗A)PX .

▶ Inverse of HX { good candidate for a preconditioner.

▲! Not inverted directly, since this would cost O(n6).
▶ A good preconditioner should reduce the number of iterations of the inner

trust-region solver. It has to be effective and cheap to compute.

Symmetric positive semidefinite matrices with fixed rank: [Vandereycken/Vandewalle 2010]
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https://epubs.siam.org/doi/10.1137/090764566


Riemannian Hessian and preconditioning/2
▶ Applying the preconditioner in X ∈Mr means solving for ξ ∈ TXM the

system
HX vec(ξ) = vec(η),

where η ∈ TXM is a known tangent vector.

▶ This is equivalent to
PX(Aξ + ξA) = η.

▶ Using the definition of the orthogonal projector onto TXMr , we obtain

PU (Aξ + ξA)PV + P ⊥U (Aξ + ξA)PV + PU (Aξ + ξA)P ⊥V = η,

which is equivalent to the system
PU (Aξ + ξA)PV = PUηPV ,

P ⊥U (Aξ + ξA)PV = P ⊥U ηPV ,

PU (Aξ + ξA)P ⊥V = PUηP
⊥
V .

...

{Many (boring) calculations, but the numerical results are quite striking!
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IV. Numerical experiments



“LYAP” variational problem

Table: Effect of preconditioning: dependence on size for LYAP.

Rank 5 Rank 10

Prec. size 10 11 12 13 14 15 10 11 12 13 14 15

No
nouter 51 54 61 59 162 92 300 103 61 63 62 59∑
ninner 4561 9431 21066 36556 30069 30096 27867 30025 33818 45760 44467 38392

maxninner 1801 3191 7055 9404 1194 1851 2974 3385 8894 24367 24537 25013

Yes
nouter 41 45 50 52 56 60 44 64 62 53 56 56∑
ninner 44 45 50 52 56 60 69 104 82 60 69 56

maxninner 4 1 1 1 1 1 9 9 8 8 8 1

▶ Stopping criterion: maximum number of outer iterations nmax outer = 300.
The inner solver is stopped when

∑
ninner first exceeds 30000.

▶ Impressive reduction in the number of iterations of the inner solver.

▶ nouter and
∑
ninner depend (quite mildly) on size, while maxninner is

basically constant.
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Allen–Cahn equation/1
▶ Reaction-diffusion equation that models the process of phase separation in

multi-component alloy systems.
▶ Other applications include: mean curvature flows, two-phase incompressible

fluids, complex dynamics of dendritic growth, and image segmentation . . .

▶ In its simplest form, it reads

∂w
∂t

= ε∆w+w −w3.

▶ It is a stiff, time-dependent PDE.

(a) t = 0 (b) t = 0.5 (c) t = 2 (f) t = 15

Figure: Time evolution of the solution w to the Allen–Cahn equation, with ERK4, h = 10−4.
Allen–Cahn equation: [Allen/Cahn 1972, Allen/Cahn 1973]
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https://www.sciencedirect.com/science/article/pii/0001616072900375
https://www.sciencedirect.com/science/article/pii/0036974873900732


Allen–Cahn equation/2 - low-rank evolution

▶ We build the functional

min
w
F (w)B

∫
Ω

εh
2
∥∇w∥2 + (1− h)

2
w2 +

h
4
w4 − w̃ ·wdxdy.

(a) (b)

Figure: Panel (a): error versus time for the preconditioned low-rank evolution of the
Allen–Cahn equation. Panel (b): error at T = 15 versus time step h.
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Fisher–KPP equation/1

▶ Nonlinear reaction-diffusion equation.
▶ Models biological population, chemical reaction dynamics with diffusion, theory

of combustion to study flame propagation, nuclear reactors . . .

▶ In its simplest form, it reads

∂w
∂t

=
∂2w

∂x2
+ r(ω)w(1−w),

where w ≡ w(x, t;ω), r(ω) is a species’s reaction rate or growth rate,
modeled as a random variable that follows a uniform law r ∼ U [1/4,1/2].

▶ Spatial domain: x ∈ [0,40], time domain: t ∈ [0,10].
▶ Homogeneous Neumann boundary conditions, i.e.,

∀t ∈ [0,10], ∂w
∂x

(0, t) = 0,
∂w
∂x

(40, t) = 0.

Fisher–KPP equation: [Fisher 1937, Kolmogorov/Petrowsky/Piskunov 1937]
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https://www.sciencedirect.com
https://www.sciencedirect.com


Fisher–KPP equation/2
▶ The initial condition is of the form

w(x,0;ω) = a(ω)e−b(ω)x2 ,

where a ∼ U [1/5, 2/5] and b ∼ U [1/10, 11/10]. The random variables a, b,
and r are all independent, and we consider Nr = 1000 realizations.

(a) (b) (c)

Figure: Fisher–KPP reference solution computed with an IMEX-CNLF scheme. Panel (a): all
the 1000 realizations at t = 0. Panel (b): all the 1000 realizations at t = 10. Panel (c):
numerical rank history.
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Fisher–KPP equation/3 - low-rank evolution
▶ We build the objective function

F(n+1)(W ) =
1
2

∥∥∥∥∥MmW −MpW
(n−1) +2h

((
W (n)

)◦2 −W (n)
)
Rω

∥∥∥∥∥2
F
.

(a) (b)

Figure: Panel (a): rank history for the preconditioned low-rank version (LR-CNLF)
compared to the reference solution (CNLF), for h = 0.00625. Panel (b): discrete L2-norm of
the error versus time, for several h.
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Conclusions

Pros and cons:

+ Efficient preconditioner on the manifold of fixed-rank matrices.

+ Solid, quite well-understood mathematical theory behind.

− If the problem does not really have a low-rank representation, then there is
no advantage over using dense matrices.

Outlook:

▶ Package the code and make it available on GitHub.

▶ Use higher-order numerical integration methods.

▶ Other applications in mind, e.g., diffusion problems in mathematical biology
or problems with low-rank tensor structure.

Thank you for your attention!
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V. Bonus material



Retractions

▶ Move in the direction of ξ while remaining constrained toM.

▶ Smooth mapping Rx : TxM→M with a local condition that preserves
gradients at x.

TxM

M

ξ

x

Rx(ξ)

▶ The Riemannian exponential mapping is also a retraction, but it is not
computationally efficient.

▶ Retractions: first-order approximation of the Riemannian exponential!

Constructing retractions: [Absil/Malick 2012]

https://epubs.siam.org/doi/10.1137/100802529


Mr : Tangent vectors

▶ A tangent vector ξ at X =UΣV ⊤ is represented as

ξ =UMV ⊤ +UpV
⊤ +UV ⊤p ,

M ∈Rr×r , Up ∈Rn×r , U⊤p U = 0, Vp ∈Rn×r , V ⊤p V = 0.

▶ We can rewrite it as

ξ = (UM +Up)V
⊤ +UV ⊤p .

{ ξ is a rank-2r bounded matrix. Useful in implementation.



Mr : Metric, projection, gradient, retraction

▶ The Riemannian metric is

gX(ξ,η) = ⟨ξ,η⟩ = Tr(ξ⊤η), with X ∈Mr and ξ,η ∈ TXMr ,

where ξ , η are seen as matrices in the ambient space Rn×n.

▶ Orthogonal projection onto the tangent space at X is

PTXMr
: Rn×n→ TXMr , Z→ PU ZPV +P⊥U ZPV +PU ZP⊥V .

▶ Riemannian gradient: projection onto TXMr of the Euclidean gradient

gradf (X) = PTXMr
(∇f (X)).

▶ Retraction RX : TXMr →Mr . Typical: truncated SVD.

Many retractions forMr : [Absil/Oseledets 2015]

https://link.springer.com/article/10.1007/s10589-014-9714-4


An example of factorized gradient
▶ “LYAP” functional: F (w(x,y)) =

∫
Ω

1
2∥∇w(x,y)∥2 −γ(x,y)w(x,y)dxdy.

▶ The gradient of F is the variational derivative δF
δw = −∆w −γ .

▶ The discretized Euclidean gradient in matrix form is given by

G = AW +WA− Γ .
with A is the second-order periodic finite difference differentiation matrix.

▶ The first-order optimality condition G = AW +WA− Γ = 0 is a Lyapunov
(or Sylvester) equation.

{ Factorized Euclidean gradient:

G =
[
AU U Uγ

]
blkdiag

(
Σ, Σ, Σγ

) [
V AV Vγ

]⊤
.

AU







U Uγ

][











Vγ







V AV

T


