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Overview

▶ Numerical algorithms on matrix
manifolds.

▶ Exploit geometric structure, take into
account the constraints.

▶ General purpose talk for a wide
audience, foundations of my research.

TxkM

M

tkηk
xk

xk+1 = Rxk (tkηk)

This talk:

I. Numerical optimization in R
n (steepest descent method).

II. Numerical (Riemannian) optimization on matrix manifolds,
fundamental ideas and tools.

III. Examples of numerical applications.
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I. Numerical optimization in R
n



Steepest descent (SD)/1

▶ Steepest descent method (最陡下降法), gradient descent (梯度下降法),
gradient method, . . .

▶ First-order method: it only uses
information on the function values
and its derivatives.

▶ SD has many variants: projected,
accelerated, conjugate,
coordinatewise, stochastic, . . .

Steepest descent: [Cauchy 1847, Hadamard 1907], . . .
Convex optimization: [Nesterov 2004, Boyd/Vandenberghe 2009], . . .
Numerical optimization: [Nocedal/Wright 2006], . . .
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https://link.springer.com/book/10.1007/978-1-4419-8853-9
https://web.stanford.edu/~boyd/cvxbook/
https://link.springer.com/book/10.1007/978-0-387-40065-5


Steepest descent (SD)/2

▶ Consider the specific case of unconstrained optimization problem, i.e.,

min
x∈Rn

f (x),

where f (x) may (or may not) have certain properties (e.g., convexity).
▶ Many optimization methods (like SD) are of the form

xk+1 = xk + tkηk ,

where tk > 0 is the step size and ηk ∈Rn is the search direction.
▶ Descent type: f (xk+1) < f (xk).

{ How to choose ηk?

▶ Steepest descent direction: ηk = −∇f (xk).
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Line-search (LS) method

{ How to calculate tk?

▶ Exact line search (LS):
min
t≥0

f (xk + tηk)

▶ tEXk is the unique minimizer if f is strictly convex.
▶ Can sometimes be computed. Good for theory.

▶ In practice, for generic f , we do not use exact LS. Replace exact LS with
something computationally cheaper, but still effective.

{ Armijo line-search (also known as Armijo backtracking, Armijo
condition, sufficient decrease condition, . . . ).

Armijo line-search technique: [Armijo 1966]
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https://msp.org/pjm/1966/16-1/pjm-v16-n1-p01-p.pdf


Steepest descent on a quadratic cost function/1

min
x∈R2

f (x), f (x) = 1
2 x
⊤Ax, A =

[1
4 0

0 1
4

]
.

replay replay
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Steepest descent on a quadratic cost function/2

min
x∈R2

f (x), f (x) = 1
2 x
⊤Ax, A = 1

5

 2 −1
2

−1
2

1
3

.

replay replay
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Steepest descent on a fully nonlinear, nonconvex function

min
x∈R2

f (x),

f (x) = 3(1− x1)2e−x
2
1−(x2+1)2 − 10

(x1
5
− x31 − x52

)
e−x

2
1−x22 − 1

3
e−(x1+1)

2−x22 .

▶ MATLAB’s peaks, a highly nonlinear, nonconvex function, obtained by
translating and scaling Gaussian distributions.

replay replay
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II. Optimization on matrix manifolds



Optimization problems on matrix manifolds

▶ We can state the optimization
problem as

min
x∈M

f (x),

where f : M→R is the objective
function andM is some matrix
manifold.

M

x

▶ Matrix manifold: any manifold that is constructed from R
n×p by taking

either embedded submanifolds or quotient manifolds.
▶ Examples of embedded submanifolds: orthogonal Stiefel manifold,

oblique manifold, manifold of symplectic matrices, manifold of fixed-rank
matrices (later), . . .

▶ Example of quotient manifold: the Grassmann manifold (not in this talk).

▶ Motivation: by exploiting the underlying geometric structure, only feasible
points are considered!

Manifold optimization: [Edelman et al. 1998, Absil et al. 2008, Boumal 2023], . . .
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https://epubs.siam.org/doi/10.1137/S0895479895290954
https://press.princeton.edu/absil
https://www.cambridge.org/core/books/an-introduction-to-optimization-on-smooth-manifolds/EAF2B35457B7034AC747188DC2FFC058


The Stiefel manifold and its tangent space

▶ Set of matrices with orthonormal
columns:

St(n,p) = {X ∈Rn×p : X⊤X = Ip}.

TXSt(n,p)

St(n,p)

ξ

X

▶ Tangent space toM at x: set of all tangent vectors toM at x, denoted TxM.
For St(n,p),

TXSt(n,p) = {XΩ +X⊥K : Ω = −Ω⊤, K ∈R(n−p)×p},

where X⊥ ∈Rn×(n−p) is orthonormal and span(X⊥) =
(
span(X)

)⊥
.

▶ Dimension: since dim
(
St(n,p)

)
= dim

(
TXSt(n,p)

)
, we have

dim(St(n,p)) = dim(Sskew) + dim(R(n−p)×p) = np − 1
2p(p+1).

Stiefel manifold: [Stiefel 1935]
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Riemannian manifold
A manifoldM endowed with a smoothly-varying inner product (called
Riemannian metric g) is called Riemannian manifold.

{ A couple (M, g), i.e., a manifold with a Riemannian metric on it.

{ For the Stiefel manifold:
▶ Embedded metric inherited by TXSt(n,p) from the embedding space Rn×p

⟨ξ,η⟩ = Tr(ξ⊤η), ξ, η ∈ TXSt(n,p).

▶ Canonical metric by seeing St(n,p) as a quotient of the orthogonal group
O(n): St(n,p) = O(n)/O(n− p)

⟨ξ,η⟩c = Tr(ξ⊤(I − 1
2XX⊤)η), ξ, η ∈ TXSt(n,p).

▶ Projection onto the tangent space to St(n,p) at X

PTXSt(n,p) ξ = Xskew(X⊤ξ) + (I −XX⊤)ξ.
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Riemannian gradient

Let f : M→R. E.g., the objective function in an optimization problem.

{ For any embedded submanifold:

▶ Riemannian gradient: projection
onto TXM of the Euclidean
gradient

gradf (X) = PTXM(∇f (X)).

TXM

M

X

∇f (X)

gradf (X)

{ Recall: for the Stiefel manifold, the projection onto the tangent space is

PTXSt(n,p)ξ = Xskew(X⊤ξ) + (I −XX⊤)ξ.

{ ∇f (X) is the Euclidean gradient of f (X). For example, for f (x) = 1
2 x
⊤Ax,

one has ∇f (x) = Ax.
Matrix and vector calculus: The Matrix Cookbook, www.matrixcalculus.org, . . .
Automatic differentiation on low-rank manifolds: [Novikov/Rakhuba/Oseledets 2022]
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https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.matrixcalculus.org
https://epubs.siam.org/doi/10.1137/20M1356774


Steepest descent on a manifold
▶ Recall: Steepest descent in R

n is based on the update formula
xk+1 = xk + tkηk ,

where tk ∈R is the step size and ηk ∈Rn is the search direction.

{ On nonlinear manifolds:

▶ ηk will be a tangent vector toM at xk , i.e., ηk ∈ TxkM.

Remark: If ηk = −gradf (xk), we get the Riemannian steepest descent.
▶ Search along a curve inM whose tangent vector at t = 0 is ηk .

{ Retraction.

TxkM

M

tkηk
xk

xk+1 = Rxk (tkηk)
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Retractions

▶ Move in the direction of ξ while remaining constrained toM.
▶ Smooth mapping Rx : TxM→M with a local condition that preserves

gradients at x.

TxM

M

ξ

x

Rx(ξ)

▶ The Riemannian exponential mapping is also a retraction, but it is not
computationally efficient.

▶ Retractions: first-order approximation of the Riemannian exponential!

Constructing retractions: [Absil/Malick 2012]
16 / 27

https://epubs.siam.org/doi/10.1137/100802529


Retractions on embedded submanifolds

LetM be an embedded submanifold of a vector space E . Thus TxM is a linear
subspace of TxE ≃ E . Since x ∈M⊆ E and ξ ∈ TxM⊆ TxE ≃ E , with little abuse
of notation we write x+ ξ ∈ E .
{ General recipe to define a retraction Rx(ξ) for embedded submanifolds:
▶ Move along ξ to get to x+ ξ in E .
▶ Map x+ ξ back toM. For matrix manifolds, use matrix decompositions.

Example. LetM = Sn−1, then the
retraction at x ∈ Sn−1 is

Rx(ξ) =
x+ ξ
∥x+ ξ∥ ,

defined for all ξ ∈ TxSn−1. Rx(ξ) is
the point on Sn−1 that minimizes the
distance to x+ ξ .

y = Rx(ξ)

TxS2

S2

ξx
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Retractions on the Stiefel manifold
{ Based on matrix decompositions: given a generic matrix A ∈Rn×p

∗ ,
▶ Polar decomposition (∼ polar form of a complex number):

A =UP , with U ∈ St(n,p), P ∈ Ssym+(p).

▶ QR factorization (∼ Gram–Schmidt algorithm):

A =QR, with Q ∈ St(n,p), R ∈ Supp+(p).

Let X ∈ St(n,p) and ξ ∈ TXSt(n,p).

{ Retraction based on the polar decomposition:

RX(ξ) = (X + ξ) (I + ξ⊤ξ)−1/2.

{ Retraction based on the QR factorization:

RX(ξ) = qf(X + ξ),

where qf(A) denotes the Q factor of the QR factorization.
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Steepest descent on a manifold (reprise)

Steepest descent on manifolds is based on the update formula

xk+1 = Rxk (tkηk),

where tk ∈R and ηk ∈ TxkM.

Recipe for constructing the steepest descent method on a manifold:

▶ Choose a retraction R (previous slide).

▶ Select a search direction ηk (the anti-gradient ηk = −gradf (xk)).
▶ Select a step length tk (with a line-search technique).

TxkM

M

tkηk
xk

xk+1 = Rxk (tkηk)
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III. Numerical examples



Rayleigh quotient on the sphere/1

▶ Compute a dominant eigenvector of a symmetric matrix A ∈Rn×n.
▶ Let λ1 be the largest eigenvalue of A, and v1 the associated normalized

eigenvector, i.e.,
Av1 = λ1v1.

▶ Then λ1 is a maximum value of f : Sn−1→R, defined by x 7→ x⊤Ax.
▶ We can state the optimization problem as

min
x∈Sn−1

−x⊤Ax,

where Sn−1 = {x ∈Rn : ∥x∥ = 1} is the unit (n− 1)-sphere.
▶ Euclidean gradient: ∇f (x) = −2Ax.
▶ The global maximizers of the Rayleigh quotient are ±v1.

Rayleigh quotient on the sphere: [Absil/Mahony/Sepulchre 2008], . . .
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https://press.princeton.edu/absil


Rayleigh quotient on the sphere/2

▶ MATLAB toolboxManopt.
▶ Riemannian SD using standard line search with Armijo condition.

% Genera te random problem da t a .
n = 1 0 0 0 ;
A = randn ( n ) ;
A = . 5 ∗ ( A+A . ’ ) ;

% Crea t e the problem s t r u c t u r e .
man i fo l d = s p h e r e f a c t o r y ( n ) ;
problem .M = man i fo ld ;

% De f ine the problem co s t f u n c t i o n and i t s Eu c l i d e an g r a d i e n t .
problem . c o s t = @( x ) −x ’ ∗ ( A∗ x ) ;
problem . egrad = @( x ) −2∗A∗ x ;

o p t i on s . max i t e r = 4 0 0 ;

% So l v e .
[ x , xcos t , i n fo , ~ ] = s t e e p e s t d e s c e n t ( problem , [ ] , o p t i o n s ) ;

Manopt: [Boumal/Mishra/Absil/Sepulchre 2014], www.manopt.org
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https://jmlr.org/papers/v15/boumal14a.html
https://www.manopt.org/


Rayleigh quotient on the sphere/3

▶ Convergence behavior of steepest descent when applied to the Rayleigh quotient on
the sphere. The cost function value at the kth iteration is denoted by fk , the optimal
cost value is f ∗, and the Riemannian gradient is denoted by gk .

▶ We reach a plateau, due to the finite precision of the machine (εmach ≈ 2.22× 10−16
in double precision).

More accurate line-search technique: [Hager/Zhang 2005–2006, S./Vandereycken 2021]
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https://epubs.siam.org/doi/10.1137/030601880
https://epubs.siam.org/doi/10.1137/20M1337430


Brockett cost function on the Stiefel manifold/1

▶ Cost function defined as a weighted sum
∑

i µix
⊤
(i)Ax(i) of Rayleigh quotients

on the sphere under the orthogonality constraint x⊤(i)x(j) = δij .

▶ Matrix form
f : St(n,p)→R : X 7→ Tr(X⊤AXN ),

where A ∈Rn×n is symmetric and N = diag(µ1, . . . ,µp), with
0 < µ1 < · · · < µp.

▶ We can state the optimization problem as

min
X∈St(n,p)

Tr(X⊤AXN ).

▶ Euclidean gradient: ∇f (X) = 2AXN .

Brockett cost function: [Brockett 1993]
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https://www.ams.org/books/pspum/054.1/1216576/pspum054.1-1216576.pdf


Brockett cost function on the Stiefel manifold/2

% Genera te random problem da t a .
n = 1 0 ;
p = 3 ;
A = randn ( n ) ;
A = . 5 ∗ ( A+A . ’ ) ;

% The mat r i x c on t a i n i n g the we igh t s ( s o r t e d in a s c end ing o rde r )
N = d i ag ( s o r t ( abs ( randn ( p , 1 ) ) ) ) ;

% Crea t e the problem s t r u c t u r e .
man i fo l d = s t i e f e l f a c t o r y ( n , p ) ;
problem .M = man i fo ld ;

% De f ine the problem co s t f u n c t i o n and i t s Eu c l i d e an g r a d i e n t .
problem . c o s t = @(X) t r a c e (X ’ ∗A∗X∗N ) ;
problem . egrad = @(X) 2 ∗A∗X∗N ;

op t i on s . max i t e r = 4 0 0 ;

% So l v e .
[ x , xcos t , i n fo , ~ ] = s t e e p e s t d e s c e n t ( problem , [ ] , o p t i o n s ) ;
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Brockett cost function on the Stiefel manifold/3

▶ Convergence behavior of steepest descent when applied to the Brockett cost function
on the Stiefel manifold. The cost function value at the kth iteration is denoted by fk ,
the optimal cost value is f ∗, and the Riemannian gradient is denoted by gk .

▶ We reach a plateau, due to the finite precision of the machine (εmach ≈ 2.22× 10−16
in double precision).
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Summary and outlook
▶ Numerical (Riemannian) optimization on matrix manifolds.
▶ Many more manifolds: Grassmann, flag, fixed-rank matrices, tensor

manifolds, . . .
▶ Many more problems/applications and algorithms!
▶ Many programming options: MATLAB, Python, Julia, . . .

{ Download slides and animations:

marcosutti.net/research.html#talks

Thank you for your attention!

謝謝！
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IV. Bonus material



Metrics on St(n,p)

TXSt(n,p)

St(n,p)

ξ

X

Embedded metric:

⟨ξ,η⟩ = Tr(ξ⊤η).

Canonical metric:

⟨ξ,η⟩c = Tr(ξ⊤(I − 1
2XX⊤)η).

Length of a tangent vector ξ = XΩ +X⊥K :

∥ξ∥F =
√
⟨ξ,ξ⟩ =

√
∥Ω∥2F + ∥K∥2F. ∥ξ∥c =

√
⟨ξ,ξ⟩c =

√
1
2∥Ω∥2F + ∥K∥2F.

Example for p = 3: Ω =

 0 a b
−a 0 c
−b −c 0

, then ∥Ω∥2F = 2a2 +2b2 +2c2.



Riemannian exponential and logarithm

▶ Let x ∈M, ξ ∈ TxM, and γ(t) the geodesic such that γ(0) = x, .γ(0) = ξ . The
exponential mapping Expx : TxM→M is defined as Expx(ξ)B γ(1).

▶ Corollary: Expx(tξ)B γ(t), for t ∈ [0,1].
▶ ∀x, y ∈M, the mapping Exp−1x (y) ∈ TxM is called logarithm mapping.

Example. LetM = Sn−1, then the
exponential mapping at x ∈ Sn−1 is

y = Expx(ξ) = xcos(∥ξ∥) + ξ
∥ξ∥ sin(∥ξ∥),

and the Riemannian logarithm is

Logx(y) = ξ = arccos(x⊤y) Px y
∥Px y∥

,

where y ≡ γ(1) and Px is the projector
onto

(
span(x)

)⊥, i.e., Px = I − xx⊤.

γ

y = Expx(ξ)

TxS2

S2

ξx



Riemannian exponential and logarithm on St(n,p)

▶ Explicit expression (with the canonical metric) of the Riemannian
exponential on the Stiefel manifold St(n,p):

Y = ExpX(ξ) = Z(1) = [X X⊥] exp
([
X⊤ξ −(X⊤⊥ξ)⊤
X⊤⊥ξ O

])[
Ip

O(n−p)×p

]
.

TXSt(n,p)

St(n,p)

ξ

X

Y

Z(t)

▶ There is no explicit expression for the Riemannian logarithm on the Stiefel
manifold.



Retractions/2

Properties:

(i) Rx(0x) = x, where 0x is the zero element
of TxM.

(ii) With the identification T0xTxM≃ TxM,
Rx satisfies the local rigidity condition

DRx(0x) = idTxM.

TxM

M

ξ

x

Rx(ξ)

Two main purposes:
▶ Turn points of TxM into points ofM.
▶ Transform cost functions f : M→R defined in a neighborhood of x ∈M

into cost functions fRx
B f ◦Rx defined on the vector space TxM.



Line search on a manifold (reprise)

Algorithm 1: Line-search minimization on manifolds.
1 Given f : M→R, starting point x0 ∈M;
2 k← 0;
3 repeat
4 choose a descent direction ηk ∈ TxkM;
5 choose a retraction Rxk : TxkM→M;
6 choose a step length tk ∈R;
7 set xk+1 = Rxk (tkηk);
8 k← k +1;
9 until xk+1 sufficiently minimizes f ;

TxkM

M

tkηk
xk

xk+1 = Rxk (tkηk)



The manifold of fixed-rank matrices

▶ Our optimization problem is defined over

Mr = {X ∈Rn×n : rank(X) = r}.

{Mr has a smooth structure . . .

2× 2 example:

X =
[
x −2y
y z

]
.

Parametrization:
rank(X) = 1⇔ xz = −2y2 and
x,z , 0.

▶ Theorem:Mr is a smooth Riemannian submanifold embedded in R
n×n of

dimension r(2n− r).

Optimizing on submanifoldMr : [Vandereycken 2013]

https://epubs.siam.org/doi/10.1137/110845768


Alternative characterization

▶ Using the singular value decomposition (SVD), we have the equivalent
characterization

Mr = {UΣV ⊤ : U⊤U = Ir , V
⊤V = Ir , Σ = diag(σi), σ1 ⩾ · · · ⩾ σr > 0}.

Σ

U

V
T

r n

X

n

n = n

r

r r

▶ Only 2nr + r coefficients instead of n2. If r ≪ n, then big memory savings.
▶ Perform the calculations directly in the factorized format.



Mr : Tangent vectors

▶ A tangent vector ξ at X =UΣV ⊤ is represented as

ξ =UMV ⊤ +UpV
⊤ +UV ⊤p ,

M ∈Rr×r , Up ∈Rn×r , U⊤p U = 0, Vp ∈Rn×r , V ⊤p V = 0.

▶ We can rewrite it as

ξ = (UM +Up)V
⊤ +UV ⊤p .

{ ξ is a rank-2r bounded matrix. Useful in implementation.



Mr : Metric, projection, gradient, retraction

▶ The Riemannian metric is

gX(ξ,η) = ⟨ξ,η⟩ = Tr(ξ⊤η), with X ∈Mr and ξ,η ∈ TXMr ,

where ξ , η are seen as matrices in the ambient space Rn×n.

▶ Orthogonal projection onto the tangent space at X is

PTXMr
: Rn×n→ TXMr , Z→ PU ZPV +P⊥U ZPV +PU ZP⊥V .

▶ Riemannian gradient: projection onto TXMr of the Euclidean gradient

gradf (X) = PTXMr
(∇f (X)).

▶ Retraction RX : TXMr →Mr . Typical: truncated SVD.

Many retractions forMr : [Absil/Oseledets 2015]

https://link.springer.com/article/10.1007/s10589-014-9714-4


Allen–Cahn equation/1
▶ Reaction-diffusion equation that models the process of phase separation in

multi-component alloy systems.
▶ Other applications include: mean curvature flows, two-phase incompressible

fluids, complex dynamics of dendritic growth, and image segmentation . . .

▶ In its simplest form, it reads

∂w
∂t

= ε∆w+w −w3.

▶ It is a stiff, time-dependent PDE.

(a) t = 0 (b) t = 0.5 (c) t = 2 (f) t = 15

Figure: Time evolution of the solution w to the Allen–Cahn equation, with ERK4, h = 10−4.

Allen–Cahn equation: [Allen/Cahn 1972, Allen/Cahn 1973]

https://www.sciencedirect.com/science/article/pii/0001616072900375
https://www.sciencedirect.com/science/article/pii/0036974873900732


Allen–Cahn equation/2 - low-rank evolution

▶ We build the functional

min
w
F (w)B

∫
Ω

εh
2
∥∇w∥2 + (1− h)

2
w2 +

h
4
w4 − w̃ ·wdxdy.

(a) (b)

Figure: Panel (a): error versus time for the preconditioned low-rank evolution of the
Allen–Cahn equation. Panel (b): error at T = 15 versus time step h.



An example of factorized gradient
▶ “LYAP” functional: F (w(x,y)) =

∫
Ω

1
2∥∇w(x,y)∥2 −γ(x,y)w(x,y)dxdy.

▶ The gradient of F is the variational derivative δF
δw = −∆w −γ .

▶ The discretized Euclidean gradient in matrix form is given by

G = AW +WA− Γ .
with A is the second-order periodic finite difference differentiation matrix.

▶ The first-order optimality condition G = AW +WA− Γ = 0 is a Lyapunov
(or Sylvester) equation.

{ Factorized Euclidean gradient:

G =
[
AU U Uγ

]
blkdiag

(
Σ, Σ, Σγ

) [
V AV Vγ

]⊤
.

AU







U Uγ

][











Vγ







V AV

T


