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Overview

» Numerical algorithms on matrix
manifolds.

> Exploit geometric structure, take into
account the constraints.

> General purpose talk for a wide
audience, foundations of my research.

This talk:
I. Numerical optimization in R” (steepest descent method).

II. Numerical (Riemannian) optimization on matrix manifolds,
fundamental ideas and tools.

III. Examples of numerical applications.



. Numerical optimization in R"



Steepest descent (SD)/1

> Steepest descent method (3 [ T %
%), gradient descent (¥ & T % k),

gradient method, ... w

» First-order method: it only uses
information on the function values
and its derivatives.

» SD has many variants: projected,
accelerated, conjugate,
coordinatewise, stochastic, ...

Steepest descent: [Cauchy 1847, Hadamard 1907], ...
Convex optimization: [Nesterov 2004, Boyd/Vandenberghe 2009], ...
Numerical optimization: [Nocedal/Wright 2006], ...


https://link.springer.com/book/10.1007/978-1-4419-8853-9
https://web.stanford.edu/~boyd/cvxbook/
https://link.springer.com/book/10.1007/978-0-387-40065-5

Steepest descent (SD)/2

> Consider the specific case of unconstrained optimization problem, i.e.,

min f(x
xelR"f ()

where f(x) may (or may not) have certain properties (e.g., convexity).
> Many optimization methods (like SD) are of the form
Xk+1 = Xg + L]k
where /. > 0 is the step size and 17, € IR” is the search direction.

> Descent type: f(xge1) < f(xg).

~> How to choose 7;?

> Steepest descent direction: 17 = =V f(xy).



line search (LS):
min f (xg + /1)

is the unique minimizer if f is strictly convex.
Can sometimes be computed. Good for theory.

In practice, for generic f, we do not use exact LS. Replace exact LS with
something computationally cheaper, but still effective.

(also known as Armijo backtracking, Armijo
condition, sufficient decrease condition, ...).

Armijo line-search technique: [Armijo 1966]


https://msp.org/pjm/1966/16-1/pjm-v16-n1-p01-p.pdf

Steepest descent on a quadratic cost function/1

mliRr;f(x), flx)=4xTAx, A= [

S =
= O
—_—

replay replay



Steepest descent on a quadratic cost function/2
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Steepest descent on a fully nonlinear, nonconvex function

min f(x),
x€lR?

Flx) = 3(1—xp) et 10(%1 —x} —xi)e*xffx% - %a(wﬂfx%.

» MATLAB’s peaks, a highly nonlinear, nonconvex function, obtained by
translating and scaling Gaussian distributions.

replay replay



II. Optimization on matrix manifolds



Optimization problems on matrix manifolds

> We can state the optimization
problem as

min f (x),
where f: M — R is the objective

function and M is some matrix
manifold.

> Matrix manifold: any manifold that is constructed from IR"*P by taking
either embedded submanifolds or quotient manifolds.

» Examples of embedded submanifolds: orthogonal Stiefel manifold,

oblique manifold, manifold of symplectic matrices, manifold of fixed-rank
matrices (later), ...

» Example of quotient manifold: the Grassmann manifold (not in this talk).

> Motivation: by exploiting the underlying geometric structure, only feasible
points are considered!

Manifold optimization: [Edelman et al. 1998, Absil et al. 2008, Boumal 2023], ...


https://epubs.siam.org/doi/10.1137/S0895479895290954
https://press.princeton.edu/absil
https://www.cambridge.org/core/books/an-introduction-to-optimization-on-smooth-manifolds/EAF2B35457B7034AC747188DC2FFC058

The Stiefel manifold and its tangent space

TxSt(mp) ——
» Set of matrices with orthonormal -

columns:

St(n,p) = {X e R"P: XX =1,}.

> Tangent space to M at x: set of all tangent vectors to M at x, denoted T, M.
For St(n, p),

TxSt(n,p)={XQ+ X, K: Q=-0QT, K e R" PP},
where X, € R™"P) is orthonormal and span(X ) = (span(X))L.
» Dimension: since dim(St(n,p)) = dim(TXSt(n,p)), we have

dim(St(n, p)) = dim(Sgew) + dim(R"P>P) = np - Sp(p +1).

Stiefel manifold: [Stiefel 1935]



Riemannian manifold

A manifold M endowed with a smoothly-varying inner product (called
Riemannian metric ) is called Riemannian manifold.

~> A couple (M, g), i.e., a manifold with a Riemannian metric on it.

~> For the Stiefel manifold:

» Embedded metric inherited by TxSt(n, p) from the embedding space R"*P

(Eny=Tr(E™y), & n€TxSt(n,p).

> Canonical metric by seeing St(#, p) as a quotient of the orthogonal group
O(n): St(n, p) = O(n)/O(n - p)

(Eme=Tr(ET(I-5XXT)n), & neTxSt(np).

» Projection onto the tangent space to St(n, p) at X

Pryst(np) & = Xskew(XT&) +(I - XXT)¢.



Riemannian gradient
Let f: M — R. E.g., the objective function in an optimization problem.

~» For any embedded submanifold:

» Riemannian gradient: projection
onto Tx M of the Euclidean
gradient

grad f(X) =Pry p(V/ (X))

~> Recall: for the Stiefel manifold, the projection onto the tangent space is
Pryst(np)é = Xskew(XT&)+(I-XXT)E.

~> V[(X)is the Euclidean gradient of f(X). For example, for f(x) = %xTAx,
one has Vf(x) = Ax.

Matrix and vector calculus: The Matrix Cookbook, www.matrixcalculus.org, ...
Automatic differentiation on low-rank manifolds: [Novikov/Rakhuba/Oseledets 2022]



https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.matrixcalculus.org
https://epubs.siam.org/doi/10.1137/20M1356774

Steepest descent on a manifold

> Recall: Steepest descent in IR” is based on the update formula
Xie41 = Xk + 110

where ;. € IR is the step size and 7, € IR” is the search direction.

~> On nonlinear manifolds:
» 1], will be a tangent vector to M at xy, ie., 17, € T, M.
Remark: If 1, = —grad f(x;), we get the Riemannian steepest descent.

» Search along a curve in M whose tangent vector at t = 0 is 7.

~> Retraction.




Retractions

> Move in the direction of & while remaining constrained to M.

» Smooth mapping R, : T, M — M with a local condition that preserves
gradients at x.

» The Riemannian exponential mapping is also a retraction, but it is not
computationally efficient.

» Retractions: first-order approximation of the Riemannian exponential!

Constructing retractions: [Absil/Malick 2012]


https://epubs.siam.org/doi/10.1137/100802529

Retractions on embedded submanifolds

Let M be an embedded submanifold of a vector space £. Thus T, M is a linear
subspace of T,£ ~&. Sincexe M C € and £ e T, M C T,.E ~ &, with little abuse
of notation we write x + £ € £.

~> General recipe to define a retraction R (&) for embedded submanifolds:
> Move along & to getto x+¢& in &.

> Map x + & back to M. For matrix manifolds, use matrix decompositions.

Example. Let M = "1, then the
retraction at x € S" 1 is

_ x+é
TN

Ry (&)

defined for all £ € T, S""1. R (&) is
the point on S"~! that minimizes the
distance to x + &.




Retractions on the Stiefel manifold

. o . . . nx
~> Based on matrix decompositions: given a generic matrix A € R. P

» Polar decomposition (~ polar form of a complex number):

A=UP, with Ue€St(np), Pe€Sym+(p)

> OR factorization (~ Gram-Schmidt algorithm):
A=QR, with QEeSt(np) ReS,pp+(p)

Let X € St(n,p) and & € TxSt(n, p).

~> Retraction based on the polar decomposition:
Rx(&)= (X +&)(I+ET€)2
~> Retraction based on the QR factorization:
Ry (&) = qf(X + &),

where qf(A) denotes the Q factor of the QR factorization.



Steepest descent on a manifold (reprise)

Steepest descent on manifolds is based on the update formula

Xk+1 = ka (x ’/k);

where 7, ¢ Rand 77, € T, M.

Recipe for constructing the steepest descent method on a manifold:
» Choose a retraction R (previous slide).
> Select a search direction 1), (the anti-gradient 1, = —grad f(x;)).

» Select a step length 7, (with a line-search technique).




III. Numerical examples



Rayleigh quotient on the sphere/1

» Compute a dominant eigenvector of a symmetric matrix A € R,

> Let Ay be the largest eigenvalue of A, and v the associated normalized
eigenvector, i.e.,
Avl = /\1 V1.

» Then A, is a maximum value of f: S"™1 R, defined by x > xTAx.
> We can state the optimization problem as

min —x'Ax,
xeSn-1

where S"~! = {x € R": ||x|| = 1} is the unit (1 — 1)-sphere.

> The global maximizers of the Rayleigh quotient are +v;.

Rayleigh quotient on the sphere: [Absil/Mahony/Sepulchre 2008], ...


https://press.princeton.edu/absil

Rayleigh quotient on the sphere/2

» MATLAB toolbox Manopt.

» Riemannian SD using standard line search with Armijo condition.

% Generate random problem data.
= 1000;

= randn(n);

= .5*(A+A. ’);

> > B
I

% Create the problem structure.
manifold = spherefactory(n);
problem .M = manifold;

% Define the problem cost function and its Euclidean gradient.
problem.cost = @(x) -x'*(A+x);
problem.egrad = @(x) -2+Axx;

options.maxiter = 400;
% Solve.
[ x, xcost, info, ~ ] = steepestdescent( problem, [], options );

Manopt: [Boumal/Mishra/Absil/Sepulchre 2014], www.manopt.org


https://jmlr.org/papers/v15/boumal14a.html
https://www.manopt.org/

Rayleigh quotient on the sphere/3

> Convergence behavior of steepest descent when applied to the Rayleigh quotient on
the sphere. The cost function value at the kth iteration is denoted by fi, the optimal
cost value is f*, and the Riemannian gradient is denoted by gj.

— f* —@— || g1
10%¢ o fk *f 10%¢ Hgk H/”gl)”
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> We reach a plateau, due to the finite precision of the machine (£mach ~ 2.22 x 10716
in double precision).

More accurate line-search technique: [Hager/Zhang 2005-2006, S./Vandereycken 2021]


https://epubs.siam.org/doi/10.1137/030601880
https://epubs.siam.org/doi/10.1137/20M1337430

Brockett cost function on the Stiefel manifold/1

» Cost function defined as a weighted sum } ; ;Aix(t)Ax(i) of Rayleigh quotients
on the sphere under the orthogonality constraint x(:)x(j) = 0jj.
» Matrix form
f:St(n,p) > R: X > Tr(XTAXN),
where A € R™" is symmetric and N = diag(yl,...,pp), with
0<py <--<pp.
> We can state the optimization problem as

min Tr(XTAXN).
XeSt(n,p)

Brockett cost function: [Brockett 1993]


https://www.ams.org/books/pspum/054.1/1216576/pspum054.1-1216576.pdf

Brockett cost function on the Stiefel manifold/2

% Generate random problem data.

n = 10;

P =3

A = randn(n);
A = .5+«(A+A.);

% The matrix containing the weights (sorted in ascending order)
N = diag(sort(abs(randn(p,1))));
% Create the problem structure.
manifold = stiefelfactory(n,p);
problem .M = manifold;

% Define the problem cost function and its Euclidean gradient.
problem.cost = @(X) trace (X’ «A«X«N);
problem.egrad = @(X) 2+A«X«N;

options . maxiter = 400;

% Solve .
[ x, xcost, info, ~ ] = steepestdescent( problem, [], options );



Brockett cost function on the Stiefel manifold/3

> Convergence behavior of steepest descent when applied to the Brockett cost function
on the Stiefel manifold. The cost function value at the kth iteration is denoted by fj,
the optimal cost value is f*, and the Riemannian gradient is denoted by gj.
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> We reach a plateau, due to the finite precision of the machine (£mach ~ 2.22 x 10716
in double precision).



Summary and outlook

» Numerical (Riemannian) optimization on matrix manifolds.

» Many more manifolds: Grassmann, flag, fixed-rank matrices, tensor
manifolds, ...

» Many more problems/applications and algorithms!
» Many programming options: MATLAB, Python, Julia, ...

~> Download slides and animations:

@‘?’*'f:'
@‘i":‘:’c -.

marcosutti.net/research.html#talks

Thank you for your attention!

St


https://marcosutti.net/research.html#talks

IV. Bonus material



Metrics on St(n, p)

TxSt(mp) =

St(n,p)

Embedded metric: Canonical metric:

(&) =Tr(ETn). (e =Te(ET (1~ XX ).

Length of a tangent vector £ = XQ + X, K:

lIEllE = VK&, &) = \IQIIE + IIKIIE. I€lle = V(& E)e = S IQIIE +IKIIE.

0 a b
—a 0 c|, then [Q|=2a2+2b%+2c2
-b —-c 0

Example forp=3: Q=




Riemannian exponential and logarithm

7(0) = . The
y(1).

IIY

> Letx e M, £ € T, M, and y(t) the geodesic such that y(0) = x,
exponential mapping Exp, : T,M — M is defined as Exp, (&) :

> Corollary: Exp,(t&) := p(t), for t € [0,1].
> Vx, y € M, the mapping Exp,!(y) € T, M is called logarithm mapping.

Example. Let M = 8”1, then the
exponential mapping at x € S"~ 1 is

v = Exp, (&) = xcos(||])) + 7= sin(lI]]),

IIrEII

and the Riemannian logarithm is

Pry
1Py ylI”

where v = y(1) and Py is the projector

Log,(y) = & = arccos(x " )

L
onto (span(x)) Jie, Py =T—xxT.



Riemannian exponential and logarithm on St(#, p)

» Explicit expression (with the canonical metric) of the Riemannian
exponential on the Stiefel manifold St(, p):

) ) B XTE —(X1&)T I ]
Y =Bxpy(&) =Z(1) = [X XL]eXp([xIé @) ])[O(n—p)xp'

TxStinp)

» There is no explicit expression for the Riemannian logarithm on the Stiefel
manifold.



Retractions/2

Properties:

(i) Ry(04) = x, where 0, is the zero element
of T, M.

(ii) With the identification T Ty M ~ T, M,
R, satisfies the local rigidity condition

DR,(0y) =idt, pm-

Two main purposes:
» Turn points of T, M into points of M.

» Transform cost functions f: M — R defined in a neighborhood of x € M
into cost functions fg_:= f o R, defined on the vector space T, M.



Line search on a manifold (reprise)

Algorithm 1: Line-search minimization on manifolds.

1 Given f: M — IR, starting point xy € M;
2 k< 0;

3 repeat

4 choose a descent direction 17, € T, M;
5 choose a retraction R, : T, M — /\/l
6 choose a ;

7 | set X1 =Ry (Fr7p)s

8 k—k+1;

9 until x| sufficiently minimizes f;

Xps1 = Ry (£x17k)



The manifold of fixed-rank matrices

» Our optimization problem is defined over

M, ={X e R"™": rank(X) =r}.

~> M, has a smooth structure ...

2 x 2 example:

_|x %
e [y z ] ’
Parametrization:
rank(X) =1 & xz=-2p? and
x,z# 0.

» Theorem: M, is a smooth Riemannian submanifold embedded in R™*" of
dimension r(2n —r).

Optimizing on submanifold M,: [Vandereycken 2013]


https://epubs.siam.org/doi/10.1137/110845768

Alternative characterization

» Using the singular value decomposition (SVD), we have the equivalent
characterization

M, ={UXVT: UTU =1, V'V =1, X =diag(o;), 01 >+ >0, > 0}.

n

n r r
N - I
X
n X = n Nk

» Only 217 + r coefficients instead of n?. If r < n, then big memory savings.

> Perform the calculations directly in the factorized format.



M,: Tangent vectors

> A tangent vector & at X = UXVT is represented as
E=UMVT + UpVT + UVPT,
MeR™, U,eR™, U;—U =0, V,eR"™, VPTV =0.
> We can rewrite it as
E=(UM+ UP)VT + UVpT.

~» & is a rank-2r bounded matrix. Useful in implementation.



v

v

: Metric, projection, gradient, retraction

The Riemannian metric is
gx(&,m)=(&Eny=Tr(ETy), with XeM, and &,1eTxM,,

where &, 17 are seen as matrices in the ambient space R™*".

Orthogonal projection onto the tangent space at X is

PTXMT:]RHXH_)TXMW Z—>PUzP\/+Pi}va+PUzPJ‘}

Riemannian gradient: projection onto Tx M, of the Euclidean gradient
grad f(X) = Pryp, (VS (X))

Retraction Ry : Ty M, — M,. Typical: truncated SVD.

Many retractions for M,: [Absil/Oseledets 2015]


https://link.springer.com/article/10.1007/s10589-014-9714-4

Allen-Cahn equation/1
» Reaction-diffusion equation that models the process of phase separation in
multi-component alloy systems.

> Other applications include: mean curvature flows, two-phase incompressible
fluids, complex dynamics of dendritic growth, and image segmentation ...

» In its simplest form, it reads

0d
%Y eAw+w—wd,
ot

» It is a stiff, time-dependent PDE.

(@) t=0 (b)t=05 ©t=2 ®t=15

Figure: Time evolution of the solution w to the Allen-Cahn equation, with ERK4, h = 1074,

Allen-Cahn equation: [Allen/Cahn 1972, Allen/Cahn 1973]


https://www.sciencedirect.com/science/article/pii/0001616072900375
https://www.sciencedirect.com/science/article/pii/0036974873900732

Allen-Cahn equation/2 - low-rank evolution

» We build the functional
1-h h
mu%n}"(w) = JQ %HVsz + %wz + ZW4 —w-wdxdy.

—
5}

[ — wre 1 Hhtm)

—@—error
)

10°

107!
h

(b)

(@)
Figure: Panel (a): error versus time for the preconditioned low-rank evolution of the

Allen-Cahn equation. Panel (b): error at T = 15 versus time step h.



An example of factorized gradient
> “LYAP” functional: F (w( jﬂ 2||Vw X, )||2 y(x,v)w(x,v)dxdy.

> The gradient of F is the variational derlvatlve =-Aw-y.
» The discretized Euclidean gradient in matrix form is given by

G=AW+WA-T.

with A is the second-order periodic finite difference differentiation matrix.

» The first-order optimality condition G = AW + WA —I" = 0 is a Lyapunov
(or Sylvester) equation.

~» Factorized Euclidean gradient:

=[AU U U] blkdiag(x, £, %) [V AV v, ]




