Numerical optimization on matrix manifolds

Marco Sutti

Postdoctoral fellow at NCTS
國家理論科學研究中心 數學組

NCKU Mathematics Colloquium
November 2， 2023

Overview

- Numerical algorithms on matrix manifolds.
- Exploit geometric structure, take into account the constraints.
- General purpose talk for a wide audience, foundations of my research.

This talk:
I. Numerical optimization in \mathbb{R}^{n} (steepest descent method).
II. Numerical (Riemannian) optimization on matrix manifolds, fundamental ideas and tools.
III. Examples of numerical applications.
I. Numerical optimization in \mathbb{R}^{n}

Steepest descent（SD）／1

－Steepest descent method（最陡下降法），gradient descent（梯度下降法）， gradient method，．．．
－First－order method：it only uses information on the function values and its derivatives．
－SD has many variants：projected， accelerated，conjugate， coordinatewise，stochastic，．．．

Steepest descent：［Cauchy 1847，Hadamard 1907］，．．．
Convex optimization：［Nesterov 2004，Boyd／Vandenberghe 2009］，．．．
Numerical optimization：［Nocedal／Wright 2006］，．．．

Steepest descent (SD)/2

- Consider the specific case of unconstrained optimization problem, i.e.,

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

where $f(x)$ may (or may not) have certain properties (e.g., convexity).

- Many optimization methods (like SD) are of the form

$$
x_{k+1}=x_{k}+t_{k} \eta_{k}
$$

where $t_{k}>0$ is the step size and $\eta_{k} \in \mathbb{R}^{n}$ is the search direction.

- Descent type: $f\left(x_{k+1}\right)<f\left(x_{k}\right)$.
\leadsto How to choose η_{k} ?
- Steepest descent direction: $\eta_{k}=-\nabla f\left(x_{k}\right)$.

Line-search (LS) method

\leadsto How to calculate t_{k} ?

- Exact line search (LS):

$$
\min _{t \geq 0} f\left(x_{k}+t \eta_{k}\right)
$$

$\Rightarrow t_{k}^{\mathrm{EX}}$ is the unique minimizer if f is strictly convex.

- Can sometimes be computed. Good for theory.
- In practice, for generic f, we do not use exact LS. Replace exact LS with something computationally cheaper, but still effective.
\leadsto Armijo line-search (also known as Armijo backtracking, Armijo condition, sufficient decrease condition, ...).

[^0]Steepest descent on a quadratic cost function $/ 1$

$$
\min _{x \in \mathbb{R}^{2}} f(x), \quad f(x)=\frac{1}{2} x^{\top} A x, \quad A=\left[\begin{array}{cc}
\frac{1}{4} & 0 \\
0 & \frac{1}{4}
\end{array}\right]
$$

Steepest descent on a quadratic cost function/2

$$
\min _{x \in \mathbb{R}^{2}} f(x), \quad f(x)=\frac{1}{2} x^{\top} A x, \quad A=\frac{1}{5}\left[\begin{array}{cc}
2 & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{3}
\end{array}\right]
$$

Steepest descent on a fully nonlinear, nonconvex function

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{2}} f(x), \\
f(x)=3\left(1-x_{1}\right)^{2} e^{-x_{1}^{2}-\left(x_{2}+1\right)^{2}}-10\left(\frac{x_{1}}{5}-x_{1}^{3}-x_{2}^{5}\right) e^{-x_{1}^{2}-x_{2}^{2}}-\frac{1}{3} e^{-\left(x_{1}+1\right)^{2}-x_{2}^{2}} .
\end{gathered}
$$

- MATLAB's peaks, a highly nonlinear, nonconvex function, obtained by translating and scaling Gaussian distributions.

II. Optimization on matrix manifolds

Optimization problems on matrix manifolds

- We can state the optimization problem as

$$
\min _{x \in \mathcal{M}} f(x),
$$

where $f: \mathcal{M} \rightarrow \mathbb{R}$ is the objective function and \mathcal{M} is some matrix
 manifold.

- Matrix manifold: any manifold that is constructed from $\mathbb{R}^{n \times p}$ by taking either embedded submanifolds or quotient manifolds.
- Examples of embedded submanifolds: orthogonal Stiefel manifold, oblique manifold, manifold of symplectic matrices, manifold of fixed-rank matrices (later), ...
- Example of quotient manifold: the Grassmann manifold (not in this talk).
- Motivation: by exploiting the underlying geometric structure, only feasible points are considered!

The Stiefel manifold and its tangent space

- Set of matrices with orthonormal columns:

$$
\operatorname{St}(n, p)=\left\{X \in \mathbb{R}^{n \times p}: X^{\top} X=I_{p}\right\}
$$

- Tangent space to \mathcal{M} at x : set of all tangent vectors to \mathcal{M} at x, denoted $\mathrm{T}_{x} \mathcal{M}$. For St (n, p),

$$
\mathrm{T}_{X} \operatorname{St}(n, p)=\left\{X \Omega+X_{\perp} K: \Omega=-\Omega^{\top}, K \in \mathbb{R}^{(n-p) \times p}\right\}
$$

where $X_{\perp} \in \mathbb{R}^{n \times(n-p)}$ is orthonormal and $\operatorname{span}\left(X_{\perp}\right)=(\operatorname{span}(X))^{\perp}$.

- Dimension: since $\operatorname{dim}(\operatorname{St}(n, p))=\operatorname{dim}\left(\mathrm{T}_{X} \operatorname{St}(n, p)\right)$, we have

$$
\operatorname{dim}(\operatorname{St}(n, p))=\operatorname{dim}\left(\mathcal{S}_{\text {skew }}\right)+\operatorname{dim}\left(\mathbb{R}^{(n-p) \times p}\right)=n p-\frac{1}{2} p(p+1)
$$

Riemannian manifold

A manifold \mathcal{M} endowed with a smoothly-varying inner product (called Riemannian metric g) is called Riemannian manifold.
\leadsto A couple (\mathcal{M}, g), i.e., a manifold with a Riemannian metric on it.
\sim For the Stiefel manifold:

- Embedded metric inherited by $\mathrm{T}_{X} \operatorname{St}(n, p)$ from the embedding space $\mathbb{R}^{n \times p}$

$$
\langle\xi, \eta\rangle=\operatorname{Tr}\left(\xi^{\top} \eta\right), \quad \xi, \eta \in \mathrm{T}_{X} \operatorname{St}(n, p) .
$$

- Canonical metric by seeing $\operatorname{St}(n, p)$ as a quotient of the orthogonal group $\mathrm{O}(n): \mathrm{St}(n, p)=\mathrm{O}(n) / \mathrm{O}(n-p)$

$$
\langle\xi, \eta\rangle_{\mathrm{c}}=\operatorname{Tr}\left(\xi^{\top}\left(I-\frac{1}{2} X X^{\top}\right) \eta\right), \quad \xi, \eta \in \mathrm{T}_{X} S t(n, p) .
$$

- Projection onto the tangent space to $\operatorname{St}(n, p)$ at X

$$
\mathrm{P}_{\mathrm{T}_{X} \operatorname{St}(n, p)} \xi=X \operatorname{skew}\left(X^{\top} \xi\right)+\left(I-X X^{\top}\right) \xi .
$$

Riemannian gradient

Let $f: \mathcal{M} \rightarrow \mathbb{R}$. E.g., the objective function in an optimization problem.
\leadsto For any embedded submanifold:

- Riemannian gradient: projection onto $\mathrm{T}_{X} \mathcal{M}$ of the Euclidean gradient

$$
\operatorname{grad} f(X)=\mathrm{P}_{\mathrm{T}_{X} \mathcal{M}}(\nabla f(X))
$$

\leadsto Recall: for the Stiefel manifold, the projection onto the tangent space is

$$
\mathrm{P}_{\mathrm{T}_{X} S t(n, p)} \xi=X \operatorname{skew}\left(X^{\top} \xi\right)+\left(I-X X^{\top}\right) \xi .
$$

$\leadsto \nabla f(X)$ is the Euclidean gradient of $f(X)$. For example, for $f(x)=\frac{1}{2} x^{\top} A x$, one has $\nabla f(x)=A x$.

Matrix and vector calculus: The Matrix Cookbook, www.matrixcalculus.org, ... Automatic differentiation on low-rank manifolds: [Novikov/Rakhuba/Oseledets 2022]

Steepest descent on a manifold

- Recall: Steepest descent in \mathbb{R}^{n} is based on the update formula

$$
x_{k+1}=x_{k}+t_{k} \eta_{k},
$$

where $t_{k} \in \mathbb{R}$ is the step size and $\eta_{k} \in \mathbb{R}^{n}$ is the search direction.
\leadsto On nonlinear manifolds:

- η_{k} will be a tangent vector to \mathcal{M} at x_{k}, i.e., $\eta_{k} \in \mathrm{~T}_{x_{k}} \mathcal{M}$.

Remark: If $\eta_{k}=-\operatorname{grad} f\left(x_{k}\right)$, we get the Riemannian steepest descent.

- Search along a curve in \mathcal{M} whose tangent vector at $t=0$ is η_{k}.
\leadsto Retraction.

Retractions

- Move in the direction of ξ while remaining constrained to \mathcal{M}.
- Smooth mapping $\mathrm{R}_{x}: \mathrm{T}_{x} \mathcal{M} \rightarrow \mathcal{M}$ with a local condition that preserves gradients at x.

- The Riemannian exponential mapping is also a retraction, but it is not computationally efficient.
- Retractions: first-order approximation of the Riemannian exponential!

Retractions on embedded submanifolds

Let \mathcal{M} be an embedded submanifold of a vector space \mathcal{E}. Thus $\mathrm{T}_{x} \mathcal{M}$ is a linear subspace of $\mathrm{T}_{x} \mathcal{E} \simeq \mathcal{E}$. Since $x \in \mathcal{M} \subseteq \mathcal{E}$ and $\xi \in \mathrm{T}_{x} \mathcal{M} \subseteq \mathrm{~T}_{x} \mathcal{E} \simeq \mathcal{E}$, with little abuse of notation we write $x+\xi \in \mathcal{E}$.
\leadsto General recipe to define a retraction $\mathrm{R}_{x}(\xi)$ for embedded submanifolds:

- Move along ξ to get to $x+\xi$ in \mathcal{E}.
- Map $x+\xi$ back to \mathcal{M}. For matrix manifolds, use matrix decompositions.

Example. Let $\mathcal{M}=\mathcal{S}^{n-1}$, then the retraction at $x \in \mathcal{S}^{n-1}$ is

$$
\mathrm{R}_{x}(\xi)=\frac{x+\xi}{\|x+\xi\|}
$$

Retractions on the Stiefel manifold

\leadsto Based on matrix decompositions: given a generic matrix $A \in \mathbb{R}_{*}^{n \times p}$,

- Polar decomposition (\sim polar form of a complex number):

$$
A=U P, \quad \text { with } \quad U \in \operatorname{St}(n, p), \quad P \in \mathcal{S}_{\text {sym }^{+}}(p) .
$$

- QR factorization (\sim Gram-Schmidt algorithm):

$$
A=Q R, \quad \text { with } \quad Q \in \operatorname{St}(n, p), \quad R \in \mathcal{S}_{\text {upp }^{+}}(p) .
$$

Let $X \in \operatorname{St}(n, p)$ and $\xi \in \mathrm{T}_{X} \operatorname{St}(n, p)$.
\sim Retraction based on the polar decomposition:

$$
\mathrm{R}_{X}(\xi)=(X+\xi)\left(I+\xi^{\top} \xi\right)^{-1 / 2}
$$

\sim Retraction based on the $Q R$ factorization:

$$
\mathrm{R}_{X}(\xi)=\mathrm{qf}(X+\xi),
$$

where $\mathrm{qf}(A)$ denotes the Q factor of the QR factorization.

Steepest descent on a manifold (reprise)

Steepest descent on manifolds is based on the update formula

$$
x_{k+1}=\mathrm{R}_{x_{k}}\left(t_{k} \eta_{k}\right),
$$

where $t_{k} \in \mathbb{R}$ and $\eta_{k} \in \mathrm{~T}_{x_{k}} \mathcal{M}$.
Recipe for constructing the steepest descent method on a manifold:

- Choose a retraction R (previous slide).
- Select a search direction η_{k} (the anti-gradient $\eta_{k}=-\operatorname{grad} f\left(x_{k}\right)$).
- Select a step length t_{k} (with a line-search technique).

III. Numerical examples

Rayleigh quotient on the sphere/1

- Compute a dominant eigenvector of a symmetric matrix $A \in \mathbb{R}^{n \times n}$.
- Let λ_{1} be the largest eigenvalue of A, and v_{1} the associated normalized eigenvector, i.e.,

$$
A v_{1}=\lambda_{1} v_{1} .
$$

- Then λ_{1} is a maximum value of $f: \mathcal{S}^{n-1} \rightarrow \mathbb{R}$, defined by $x \mapsto x^{\top} A x$.
- We can state the optimization problem as

$$
\min _{x \in \mathcal{S}^{n-1}}-x^{\top} A x
$$

where $\mathcal{S}^{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}$ is the unit ($n-1$)-sphere.

- Euclidean gradient: $\nabla f(x)=-2 A x$.
- The global maximizers of the Rayleigh quotient are $\pm v_{1}$.

Rayleigh quotient on the sphere $/ 2$

- MATLAB toolbox Manopt.
- Riemannian SD using standard line search with Armijo condition.

```
% Generate random problem data.
n = 1000;
A = randn(n);
A = . 5*(A+A.');
% Create the problem structure.
manifold = spherefactory(n);
problem.M = manifold;
% Define the problem cost function and its Euclidean gradient.
problem.cost = @(x) -x'*(A*x);
problem.egrad = @(x) - 2*A*x;
options.maxiter = 400;
% Solve.
    [ x, xcost, info, ~ ] = steepestdescent( problem, [], options );
```


Rayleigh quotient on the sphere $/ 3$

- Convergence behavior of steepest descent when applied to the Rayleigh quotient on the sphere. The cost function value at the k th iteration is denoted by f_{k}, the optimal cost value is f^{*}, and the Riemannian gradient is denoted by g_{k}.

- We reach a plateau, due to the finite precision of the machine $\left(\varepsilon_{\text {mach }} \approx 2.22 \times 10^{-16}\right.$ in double precision).

Brockett cost function on the Stiefel manifold/1

- Cost function defined as a weighted sum $\sum_{i} \mu_{i} x_{(i)}^{\top} A x_{(i)}$ of Rayleigh quotients on the sphere under the orthogonality constraint $x_{(i)}^{\top} x_{(j)}=\delta_{i j}$.
- Matrix form

$$
f: \operatorname{St}(n, p) \rightarrow \mathbb{R}: X \mapsto \operatorname{Tr}\left(X^{\top} A X N\right),
$$

where $A \in \mathbb{R}^{n \times n}$ is symmetric and $N=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{p}\right)$, with $0<\mu_{1}<\cdots<\mu_{p}$.

- We can state the optimization problem as

$$
\min _{X \in \operatorname{St}(n, p)} \operatorname{Tr}\left(X^{\top} A X N\right) .
$$

- Euclidean gradient: $\nabla f(X)=2 A X N$.

Brockett cost function on the Stiefel manifold/2

\% Generate random problem data.
$\mathrm{n}=10$;
$\mathrm{p}=3$;
$\mathrm{A}=\operatorname{randn}(\mathrm{n})$;
$A=.5 *(A+A . ')$;
\% The matrix containing the weights (sorted in ascending order) $\mathrm{N}=\operatorname{diag}(\operatorname{sort}(\operatorname{abs}(\operatorname{randn}(\mathrm{p}, 1))))$;
\% Create the problem structure.
manifold = stiefelfactory (n, p);
problem. $M=$ manifold;
\% Define the problem cost function and its Euclidean gradient.
problem.cost $=@(X)$ trace $\left(X^{\prime} * A * X * N\right)$;
problem.egrad $=@(X) 2 * A * X * N$;
options.maxiter $=400$;
\% Solve.
[x, xcost, info, ~] = steepestdescent(problem, [], options);

Brockett cost function on the Stiefel manifold/3

- Convergence behavior of steepest descent when applied to the Brockett cost function on the Stiefel manifold. The cost function value at the k th iteration is denoted by f_{k}, the optimal cost value is f^{*}, and the Riemannian gradient is denoted by g_{k}.

- We reach a plateau, due to the finite precision of the machine $\left(\varepsilon_{\text {mach }} \approx 2.22 \times 10^{-16}\right.$ in double precision).

Summary and outlook

- Numerical (Riemannian) optimization on matrix manifolds.
- Many more manifolds: Grassmann, flag, fixed-rank matrices, tensor manifolds, ...
- Many more problems/applications and algorithms!
- Many programming options: MATLAB, Python, Julia, ...
$~$ Download slides and animations:

marcosutti.net/research.html\#talks
Thank you for your attention!
謝謝!
IV. Bonus material

Metrics on $\operatorname{St}(n, p)$

Embedded metric:
Canonical metric:
$\langle\xi, \eta\rangle=\operatorname{Tr}\left(\xi^{\top} \eta\right)$.
$\langle\xi, \eta\rangle_{c}=\operatorname{Tr}\left(\xi^{\top}\left(I-\frac{1}{2} X X^{\top}\right) \eta\right)$.

Length of a tangent vector $\xi=X \Omega+X_{\perp} K$:
$\|\xi\|_{\mathrm{F}}=\sqrt{\langle\xi, \xi\rangle}=\sqrt{\|\Omega\|_{\mathrm{F}}^{2}+\|K\|_{\mathrm{F}}^{2}} . \quad\|\xi\|_{\mathrm{c}}=\sqrt{\langle\xi, \xi\rangle_{\mathrm{c}}}=\sqrt{\frac{1}{2}\|\Omega\|_{\mathrm{F}}^{2}+\|K\|_{\mathrm{F}}^{2}}$.
Example for $p=3: \quad \Omega=\left[\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right]$, then $\quad\|\Omega\|_{\mathrm{F}}^{2}=2 a^{2}+2 b^{2}+2 c^{2}$.

Riemannian exponential and logarithm

- Let $x \in \mathcal{M}, \xi \in \mathrm{~T}_{x} \mathcal{M}$, and $\gamma(t)$ the geodesic such that $\gamma(0)=x, \dot{\gamma}(0)=\xi$. The exponential mapping $\operatorname{Exp}_{x}: \mathrm{T}_{x} \mathcal{M} \rightarrow \mathcal{M}$ is defined as $\operatorname{Exp}_{x}(\xi):=\gamma(1)$.
- Corollary: $\operatorname{Exp}_{x}(t \xi):=\gamma(t)$, for $t \in[0,1]$.
- $\forall x, y \in \mathcal{M}$, the mapping $\operatorname{Exp}_{x}^{-1}(y) \in \mathrm{T}_{x} \mathcal{M}$ is called logarithm mapping.

Example. Let $\mathcal{M}=\mathcal{S}^{n-1}$, then the exponential mapping at $x \in \mathcal{S}^{n-1}$ is

$$
y=\operatorname{Exp}_{x}(\xi)=x \cos (\|\xi\|)+\frac{\xi}{\|\xi\|} \sin (\|\xi\|)
$$

and the Riemannian logarithm is

$$
\log _{x}(y)=\xi=\arccos \left(x^{\top} y\right) \frac{\mathrm{P}_{x} y}{\left\|\mathrm{P}_{x} y\right\|}
$$

where $y \equiv \gamma(1)$ and P_{x} is the projector onto $(\operatorname{span}(x))^{\perp}$, i.e., $\mathrm{P}_{x}=I-x x^{\top}$.

Riemannian exponential and logarithm on $\operatorname{St}(n, p)$

- Explicit expression (with the canonical metric) of the Riemannian exponential on the Stiefel manifold $\operatorname{St}(n, p)$:

$$
Y=\operatorname{Exp}_{X}(\xi)=Z(1)=\left[\begin{array}{ll}
X & X_{\perp}
\end{array}\right] \exp \left(\left[\begin{array}{cc}
X^{\top} \xi & -\left(X_{\perp}^{\top} \xi\right)^{\top} \\
X_{\perp}^{\top} \xi & O
\end{array}\right]\right)\left[\begin{array}{c}
I_{p} \\
O_{(n-p) \times p}
\end{array}\right]
$$

- There is no explicit expression for the Riemannian logarithm on the Stiefel manifold.

Retractions/2

Properties:

(i) $\mathrm{R}_{x}\left(0_{x}\right)=x$, where 0_{x} is the zero element of $\mathrm{T}_{x} \mathcal{M}$.
(ii) With the identification $\mathrm{T}_{0_{x}} \mathrm{~T}_{x} \mathcal{M} \simeq \mathrm{~T}_{x} \mathcal{M}$, R_{x} satisfies the local rigidity condition

$$
\operatorname{DR}_{x}\left(0_{x}\right)=\mathrm{id}_{\mathrm{T}_{x} \mathcal{M}}
$$

Two main purposes:

- Turn points of $\mathrm{T}_{x} \mathcal{M}$ into points of \mathcal{M}.
- Transform cost functions $f: \mathcal{M} \rightarrow \mathbb{R}$ defined in a neighborhood of $x \in \mathcal{M}$ into cost functions $f_{\mathrm{R}_{x}}:=f \circ \mathrm{R}_{x}$ defined on the vector space $\mathrm{T}_{x} \mathcal{M}$.

Line search on a manifold (reprise)

Algorithm 1: Line-search minimization on manifolds.
1 Given $f: \mathcal{M} \rightarrow \mathbb{R}$, starting point $x_{0} \in \mathcal{M}$;
$2 k \leftarrow 0$;
3 repeat
4 choose a descent direction $\eta_{k} \in \mathrm{~T}_{x_{k}} \mathcal{M}$;
$5 \quad$ choose a retraction $\mathrm{R}_{x_{k}}: \mathrm{T}_{x_{k}} \mathcal{M} \rightarrow \mathcal{M}$;
6 choose a step length $t_{k} \in \mathbb{R}$;
set $x_{k+1}=\mathrm{R}_{x_{k}}\left(t_{k} \eta_{k}\right)$;
$k \leftarrow k+1 ;$
9 until x_{k+1} sufficiently minimizes f;

The manifold of fixed-rank matrices

- Our optimization problem is defined over

$$
\mathcal{M}_{r}=\left\{X \in \mathbb{R}^{n \times n}: \operatorname{rank}(X)=r\right\} .
$$

$\leadsto \mathcal{M}_{r}$ has a smooth structure \ldots
2×2 example:

$$
X=\left[\begin{array}{cc}
x & -2 y \\
y & z
\end{array}\right]
$$

Parametrization:
$\operatorname{rank}(X)=1 \Leftrightarrow x z=-2 y^{2}$ and $x, z \neq 0$.

- Theorem: \mathcal{M}_{r} is a smooth Riemannian submanifold embedded in $\mathbb{R}^{n \times n}$ of dimension $r(2 n-r)$.

Optimizing on submanifold \mathcal{M}_{r} : [Vandereycken 2013]

Alternative characterization

- Using the singular value decomposition (SVD), we have the equivalent characterization

$$
\mathcal{M}_{r}=\left\{U \Sigma V^{\top}: U^{\top} U=I_{r}, V^{\top} V=I_{r}, \Sigma=\operatorname{diag}\left(\sigma_{i}\right), \sigma_{1} \geqslant \cdots \geqslant \sigma_{r}>0\right\}
$$

- Only $2 n r+r$ coefficients instead of n^{2}. If $r \ll n$, then big memory savings.
- Perform the calculations directly in the factorized format.

\mathcal{M}_{r} : Tangent vectors

- A tangent vector ξ at $X=U \Sigma V^{\top}$ is represented as

$$
\xi=U M V^{\top}+U_{p} V^{\top}+U V_{p}^{\top},
$$

$$
M \in \mathbb{R}^{r \times r}, \quad U_{p} \in \mathbb{R}^{n \times r}, \quad U_{p}^{\top} U=0, \quad V_{p} \in \mathbb{R}^{n \times r}, \quad V_{p}^{\top} V=0 .
$$

- We can rewrite it as

$$
\xi=\left(U M+U_{p}\right) V^{\top}+U V_{p}^{\top}
$$

$\leadsto \xi$ is a rank- $2 r$ bounded matrix. Useful in implementation.

$\mathcal{M}_{r}:$ Metric, projection, gradient, retraction

- The Riemannian metric is

$$
g_{X}(\xi, \eta)=\langle\xi, \eta\rangle=\operatorname{Tr}\left(\xi^{\top} \eta\right), \quad \text { with } \quad X \in \mathcal{M}_{r} \quad \text { and } \quad \xi, \eta \in \mathrm{T}_{X} \mathcal{M}_{r},
$$

where ξ, η are seen as matrices in the ambient space $\mathbb{R}^{n \times n}$.

- Orthogonal projection onto the tangent space at X is

$$
\mathrm{P}_{\mathrm{T}_{X} \mathcal{M}_{r}}: \mathbb{R}^{n \times n} \rightarrow \mathrm{~T}_{X} \mathcal{M}_{r}, \quad Z \rightarrow \mathrm{P}_{U} Z \mathrm{P}_{V}+\mathrm{P}_{U}^{\perp} Z \mathrm{P}_{V}+\mathrm{P}_{U} Z \mathrm{P}_{V}^{\perp}
$$

- Riemannian gradient: projection onto $\mathrm{T}_{X} \mathcal{M}_{r}$ of the Euclidean gradient

$$
\operatorname{grad} f(X)=\mathrm{P}_{\mathrm{T}_{X} \mathcal{M}_{r}}(\nabla f(X))
$$

- Retraction $\mathrm{R}_{X}: \mathrm{T}_{X} \mathcal{M}_{r} \rightarrow \mathcal{M}_{r}$. Typical: truncated SVD.

Allen-Cahn equation/1

- Reaction-diffusion equation that models the process of phase separation in multi-component alloy systems.
- Other applications include: mean curvature flows, two-phase incompressible fluids, complex dynamics of dendritic growth, and image segmentation...
- In its simplest form, it reads

$$
\frac{\partial w}{\partial t}=\varepsilon \Delta w+w-w^{3}
$$

- It is a stiff, time-dependent PDE.

(a) $t=0$

(b) $t=0.5$

(c) $t=2$

(f) $t=15$

Figure: Time evolution of the solution w to the Allen-Cahn equation, with ERK4, $h=10^{-4}$. Allen-Cahn equation: [Allen/Cahn 1972, Allen/Cahn 1973]

Allen-Cahn equation/2-low-rank evolution

- We build the functional

$$
\min _{w} \mathcal{F}(w):=\int_{\Omega} \frac{\varepsilon h}{2}\|\nabla w\|^{2}+\frac{(1-h)}{2} w^{2}+\frac{h}{4} w^{4}-\widetilde{w} \cdot w \mathrm{~d} x \mathrm{~d} y
$$

(a)

(b)

Figure: Panel (a): error versus time for the preconditioned low-rank evolution of the Allen-Cahn equation. Panel (b): error at $T=15$ versus time step h.

An example of factorized gradient

- "LYAP" functional: $\mathcal{F}(w(x, y))=\int_{\Omega} \frac{1}{2}\|\nabla w(x, y)\|^{2}-\gamma(x, y) w(x, y) \mathrm{d} x \mathrm{~d} y$.
- The gradient of \mathcal{F} is the variational derivative $\frac{\delta \mathcal{F}}{\delta w}=-\Delta w-\gamma$.
- The discretized Euclidean gradient in matrix form is given by

$$
G=A W+W A-\Gamma
$$

with A is the second-order periodic finite difference differentiation matrix.

- The first-order optimality condition $G=A W+W A-\Gamma=0$ is a Lyapunov (or Sylvester) equation.
\leadsto Factorized Euclidean gradient:

$$
G=\left[\begin{array}{lll}
A U & U & U_{\gamma}
\end{array}\right] \operatorname{blkdiag}\left(\Sigma, \Sigma, \Sigma_{\gamma}\right)\left[\begin{array}{lll}
V & A V & V_{\gamma}
\end{array}\right]^{\top} .
$$

[^0]: Armijo line-search technique: [Armijo 1966]

