Numerical optimization on matrix manifolds

Marco Sutti

Postdoctoral fellow at NCTS 國家理論科學研究中心 數學組

NCKU Mathematics Colloquium

November 2, 2023

Overview

- Numerical algorithms on matrix manifolds.
- Exploit geometric structure, take into account the constraints.
- General purpose talk for a wide audience, foundations of my research.

This talk:

- I. Numerical optimization in \mathbb{R}^n (steepest descent method).
- II. Numerical (Riemannian) optimization on matrix manifolds, fundamental ideas and tools.
- III. Examples of numerical applications.

I. Numerical optimization in \mathbb{R}^n

Steepest descent (SD)/1

- ► Steepest descent method (最陡下降法), gradient descent (梯度下降法), gradient method, ...
- First-order method: it only uses information on the function values and its derivatives.
- SD has many variants: projected, accelerated, conjugate, coordinatewise, stochastic, ...

Steepest descent: [Cauchy 1847, Hadamard 1907], ... Convex optimization: [Nesterov 2004, Boyd/Vandenberghe 2009], ... Numerical optimization: [Nocedal/Wright 2006], ...

Steepest descent (SD)/2

► Consider the specific case of unconstrained optimization problem, i.e.,

 $\min_{x\in\mathbb{R}^n}f(x),$

where f(x) may (or may not) have certain properties (e.g., convexity).
Many optimization methods (like SD) are of the form

 $x_{k+1} = x_k + t_k \eta_k,$

where $t_k > 0$ is the step size and $\eta_k \in \mathbb{R}^n$ is the search direction.

• Descent type: $f(x_{k+1}) < f(x_k)$.

 \rightarrow How to choose η_k ?

• **Steepest** descent direction: $\eta_k = -\nabla f(x_k)$.

Line-search (LS) method

\rightarrow How to calculate t_k ?

Exact line search (LS):

 $\min_{t\geq 0} f(x_k + t\eta_k)$

• t_k^{EX} is the unique minimizer if f is strictly convex.

- Can sometimes be computed. Good for theory.
- In practice, for generic f, we do not use exact LS. Replace exact LS with something computationally cheaper, but still effective.

 \sim Armijo line-search (also known as Armijo backtracking, Armijo condition, sufficient decrease condition, ...).

Armijo line-search technique: [Armijo 1966]

Steepest descent on a quadratic cost function/1

$$\min_{x \in \mathbb{R}^2} f(x), \qquad f(x) = \frac{1}{2} x^\top A x, \qquad A = \begin{bmatrix} \frac{1}{4} & 0\\ 0 & \frac{1}{4} \end{bmatrix}.$$

replay

replay

Steepest descent on a quadratic cost function/2

$$\min_{x \in \mathbb{R}^2} f(x), \qquad f(x) = \frac{1}{2} x^{\mathsf{T}} A x, \qquad A = \frac{1}{5} \begin{vmatrix} 2 & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{3} \end{vmatrix}.$$

4 -

replay

replay

Steepest descent on a fully nonlinear, nonconvex function

$$\min_{x \in \mathbb{R}^2} f(x),$$

$$f(x) = 3(1-x_1)^2 e^{-x_1^2 - (x_2+1)^2} - 10\left(\frac{x_1}{5} - x_1^3 - x_2^5\right) e^{-x_1^2 - x_2^2} - \frac{1}{3}e^{-(x_1+1)^2 - x_2^2}.$$

 MATLAB's peaks, a highly nonlinear, nonconvex function, obtained by translating and scaling Gaussian distributions. II. Optimization on matrix manifolds

Optimization problems on matrix manifolds

We can state the optimization problem as

 $\min_{x\in\mathcal{M}}f(x),$

where $f: \mathcal{M} \to \mathbb{R}$ is the objective function and \mathcal{M} is some matrix manifold.

- ► Matrix manifold: any manifold that is constructed from ℝ^{*n×p*} by taking either embedded submanifolds or quotient manifolds.
 - ► Examples of embedded submanifolds: orthogonal Stiefel manifold, oblique manifold, manifold of symplectic matrices, manifold of fixed-rank matrices (later), ...
 - **Example of quotient manifold:** the Grassmann manifold (not in this talk).
- Motivation: by exploiting the underlying geometric structure, only feasible points are considered!

Manifold optimization: [Edelman et al. 1998, Absil et al. 2008, Boumal 2023], ...

The Stiefel manifold and its tangent space

$$\operatorname{St}(n,p) = \{ X \in \mathbb{R}^{n \times p} : X^{\top} X = I_p \}.$$

Tangent space to \mathcal{M} at x: set of all tangent vectors to \mathcal{M} at x, denoted $T_x \mathcal{M}$. For St(n, p),

$$T_X St(n,p) = \{ X\Omega + X_{\perp} K \colon \Omega = -\Omega^{\top}, \ K \in \mathbb{R}^{(n-p) \times p} \},\$$

where $X_{\perp} \in \mathbb{R}^{n \times (n-p)}$ is orthonormal and span $(X_{\perp}) = (\text{span}(X))^{\perp}$.

• Dimension: since $\dim(St(n, p)) = \dim(T_XSt(n, p))$, we have

$$\dim(\operatorname{St}(n,p)) = \dim(\mathcal{S}_{\operatorname{skew}}) + \dim(\mathbb{R}^{(n-p) \times p}) = np - \frac{1}{2}p(p+1).$$

Stiefel manifold: [Stiefel 1935]

Riemannian manifold

A manifold \mathcal{M} endowed with a smoothly-varying inner product (called Riemannian metric *g*) is called Riemannian manifold.

 \rightarrow A couple (\mathcal{M} , g), i.e., a manifold with a Riemannian metric on it.

 \rightsquigarrow For the Stiefel manifold:

Embedded metric inherited by $T_X St(n, p)$ from the embedding space $\mathbb{R}^{n \times p}$

$$\langle \xi, \eta \rangle = \operatorname{Tr}(\xi^{\top}\eta), \qquad \xi, \eta \in \operatorname{T}_X \operatorname{St}(n, p).$$

► Canonical metric by seeing St(n, p) as a quotient of the orthogonal group O(n): St(n, p) = O(n)/O(n - p)

$$\langle \xi, \eta \rangle_{c} = \operatorname{Tr}(\xi^{\top}(I - \frac{1}{2}XX^{\top})\eta), \qquad \xi, \eta \in \operatorname{T}_{X}\operatorname{St}(n, p).$$

Projection onto the tangent space to St(n, p) at X

$$P_{T_X \operatorname{St}(n,p)} \xi = X \operatorname{skew}(X^{\top} \xi) + (I - XX^{\top}) \xi.$$

Riemannian gradient

Let $f: \mathcal{M} \to \mathbb{R}$. E.g., the objective function in an optimization problem.

 \rightsquigarrow For any embedded submanifold:

 Riemannian gradient: projection onto T_X M of the Euclidean gradient

grad $f(X) = P_{T_X \mathcal{M}}(\nabla f(X)).$

 \rightsquigarrow Recall: for the Stiefel manifold, the projection onto the tangent space is

$$P_{T_X \operatorname{St}(n,p)} \xi = X \operatorname{skew}(X^{\top} \xi) + (I - XX^{\top}) \xi.$$

→ $\nabla f(X)$ is the **Euclidean gradient** of f(X). For example, for $f(x) = \frac{1}{2}x^{\top}Ax$, one has $\nabla f(x) = Ax$.

Matrix and vector calculus: The Matrix Cookbook, www.matrixcalculus.org, ... Automatic differentiation on low-rank manifolds: [Novikov/Rakhuba/Oseledets 2022]

Steepest descent on a manifold

Recall: Steepest descent in \mathbb{R}^n is based on the update formula

 $x_{k+1} = x_k + t_k \eta_k,$

where $t_k \in \mathbb{R}$ is the step size and $\eta_k \in \mathbb{R}^n$ is the search direction.

 \sim On nonlinear manifolds:

▶ η_k will be a tangent vector to \mathcal{M} at x_k , i.e., $\eta_k \in T_{x_k}\mathcal{M}$.

<u>Remark</u>: If $\eta_k = -\operatorname{grad} f(x_k)$, we get the **Riemannian steepest descent**.

Search along a curve in \mathcal{M} whose tangent vector at t = 0 is η_k .

\rightarrow Retraction.

Retractions

- Move in the direction of ξ while remaining constrained to \mathcal{M} .
- Smooth mapping $R_x : T_x \mathcal{M} \to \mathcal{M}$ with a local condition that preserves gradients at *x*.

- The Riemannian exponential mapping is also a retraction, but it is not computationally efficient.
- Retractions: first-order approximation of the Riemannian exponential!

Constructing retractions: [Absil/Malick 2012]

Retractions on embedded submanifolds

Let \mathcal{M} be an embedded submanifold of a vector space \mathcal{E} . Thus $T_x \mathcal{M}$ is a linear subspace of $T_x \mathcal{E} \simeq \mathcal{E}$. Since $x \in \mathcal{M} \subseteq \mathcal{E}$ and $\xi \in T_x \mathcal{M} \subseteq T_x \mathcal{E} \simeq \mathcal{E}$, with little abuse of notation we write $x + \xi \in \mathcal{E}$.

 \sim General recipe to define a retraction $R_x(\xi)$ for embedded submanifolds:

- Move along ξ to get to $x + \xi$ in \mathcal{E} .
- Map $x + \xi$ back to \mathcal{M} . For matrix manifolds, use matrix decompositions.

Example. Let $\mathcal{M} = \mathcal{S}^{n-1}$, then the retraction at $x \in \mathcal{S}^{n-1}$ is

$$\mathbf{R}_{x}(\xi) = \frac{x+\xi}{\|x+\xi\|},$$

defined for all $\xi \in T_x S^{n-1}$. $R_x(\xi)$ is the point on S^{n-1} that minimizes the distance to $x + \xi$.

Retractions on the Stiefel manifold

→ Based on matrix decompositions: given a generic matrix $A \in \mathbb{R}^{n \times p}_{*}$,

Polar decomposition (~ polar form of a complex number):

A = UP, with $U \in St(n, p)$, $P \in S_{sym^+}(p)$.

QR factorization (~ Gram–Schmidt algorithm):

A = QR, with $Q \in St(n, p)$, $R \in S_{upp^+}(p)$.

Let $X \in St(n, p)$ and $\xi \in T_X St(n, p)$.

 \sim Retraction based on the polar decomposition:

 $R_X(\xi) = (X + \xi) (I + \xi^{\top} \xi)^{-1/2}.$

 \sim Retraction based on the QR factorization:

 $\mathbf{R}_X(\xi) = \mathbf{q}\mathbf{f}(X + \xi),$

where qf(A) denotes the Q factor of the QR factorization.

Steepest descent on a manifold (reprise)

Steepest descent on manifolds is based on the update formula

 $x_{k+1} = \mathbf{R}_{\mathbf{x}_k}(t_k \eta_k),$

where $t_k \in \mathbb{R}$ and $\eta_k \in T_{x_k} \mathcal{M}$.

Recipe for constructing the steepest descent method on a manifold:

- ► Choose a retraction R (previous slide).
- Select a search direction η_k (the anti-gradient $\eta_k = -\operatorname{grad} f(x_k)$).
- Select a step length t_k (with a line-search technique).

III. Numerical examples

Rayleigh quotient on the sphere/1

- Compute a dominant eigenvector of a symmetric matrix $A \in \mathbb{R}^{n \times n}$.
- Let λ₁ be the largest eigenvalue of A, and v₁ the associated normalized eigenvector, i.e.,

$$Av_1 = \lambda_1 v_1.$$

- Then λ_1 is a maximum value of $f: S^{n-1} \to \mathbb{R}$, defined by $x \mapsto x^{\top}Ax$.
- We can state the optimization problem as

$$\min_{x\in\mathcal{S}^{n-1}}-x^{\top}Ax,$$

where $S^{n-1} = \{x \in \mathbb{R}^n : ||x|| = 1\}$ is the unit (n-1)-sphere.

- **Euclidean gradient:** $\nabla f(x) = -2Ax$.
- The global maximizers of the Rayleigh quotient are $\pm v_1$.

Rayleigh quotient on the sphere: [Absil/Mahony/Sepulchre 2008], ...

Rayleigh quotient on the sphere/2

MATLAB toolbox Manopt.

▶ Riemannian SD using standard line search with Armijo condition.

```
% Generate random problem data.
n = 1000;
A = randn(n);
A = .5 * (A + A.');
% Create the problem structure.
manifold = spherefactory(n);
problem.M = manifold;
% Define the problem cost function and its Euclidean gradient.
problem.cost = @(x) - x' * (A * x);
problem.egrad = (a(x)) - 2 A x;
options.maxiter = 400;
% Solve.
[x, xcost, info, ~] = steepestdescent(problem, [], options);
```

Manopt: [Boumal/Mishra/Absil/Sepulchre 2014], www.manopt.org

Rayleigh quotient on the sphere/3

Convergence behavior of steepest descent when applied to the Rayleigh quotient on the sphere. The cost function value at the *k*th iteration is denoted by *f_k*, the optimal cost value is *f*^{*}, and the Riemannian gradient is denoted by *g_k*.

► We reach a plateau, due to the finite precision of the machine (ε_{mach} ≈ 2.22 × 10⁻¹⁶ in double precision).

More accurate line-search technique: [Hager/Zhang 2005-2006, S./Vandereycken 2021]

Brockett cost function on the Stiefel manifold/1

- Cost function defined as a weighted sum $\sum_{i} \mu_{i} x_{(i)}^{\top} A x_{(i)}$ of Rayleigh quotients on the sphere under the orthogonality constraint $x_{(i)}^{\top} x_{(j)} = \delta_{ij}$.
- Matrix form

$$f: \operatorname{St}(n,p) \to \mathbb{R} \colon X \mapsto \operatorname{Tr}(X^{\top}AXN),$$

where $A \in \mathbb{R}^{n \times n}$ is symmetric and $N = \text{diag}(\mu_1, \dots, \mu_p)$, with $0 < \mu_1 < \dots < \mu_p$.

We can state the optimization problem as

 $\min_{X\in \operatorname{St}(n,p)}\operatorname{Tr}(X^{\top}AXN).$

Euclidean gradient: $\nabla f(X) = 2AXN$.

Brockett cost function: [Brockett 1993]

Brockett cost function on the Stiefel manifold/2

```
% Generate random problem data.
n = 10;
p = 3;
A = randn(n);
A = .5*(A+A.');
% The matrix containing the weights (sorted in ascending order)
N = diag(sort(abs(randn(p,1))));
% Create the problem structure.
manifold = stiefelfactory(n,p);
problem.M = manifold;
```

```
% Define the problem cost function and its Euclidean gradient.
problem.cost = @(X) trace(X'*A*X*N);
problem.egrad = @(X) 2*A*X*N;
```

```
options.maxiter = 400;
% Solve.
[ x, xcost, info, ~ ] = steepestdescent( problem, [], options );
```

Brockett cost function on the Stiefel manifold/3

Convergence behavior of steepest descent when applied to the Brockett cost function on the Stiefel manifold. The cost function value at the *k*th iteration is denoted by *f_k*, the optimal cost value is *f*^{*}, and the Riemannian gradient is denoted by *g_k*.

► We reach a plateau, due to the finite precision of the machine (ε_{mach} ≈ 2.22 × 10⁻¹⁶ in double precision).

Summary and outlook

- ▶ Numerical (Riemannian) optimization on matrix manifolds.
- Many more manifolds: Grassmann, flag, fixed-rank matrices, tensor manifolds, ...
- Many more problems/applications and algorithms!
- ▶ Many programming options: MATLAB, Python, Julia, ...

 \rightsquigarrow Download slides and animations:

marcosutti.net/research.html#talks

Thank you for your attention!

谢谢

IV. Bonus material

Metrics on St(*n*, *p*)

Embedded metric:Canonical metric: $\langle \xi, \eta \rangle = \operatorname{Tr}(\xi^{\top}\eta).$ $\langle \xi, \eta \rangle_{c} = \operatorname{Tr}(\xi^{\top}(I - \frac{1}{2}XX^{\top})\eta).$

Length of a tangent vector $\xi = X\Omega + X_{\perp}K$:

$$\begin{split} \|\xi\|_{\rm F} &= \sqrt{\langle\xi,\xi\rangle} = \sqrt{\|\Omega\|_{\rm F}^2 + \|K\|_{\rm F}^2}. \qquad \|\xi\|_{\rm c} = \sqrt{\langle\xi,\xi\rangle_{\rm c}} = \sqrt{\frac{1}{2}}\|\Omega\|_{\rm F}^2 + \|K\|_{\rm F}^2}. \\ \text{Example for } p &= 3: \quad \Omega = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix}, \quad \text{then} \quad \|\Omega\|_{\rm F}^2 = 2a^2 + 2b^2 + 2c^2. \end{split}$$

Riemannian exponential and logarithm

► Let $x \in \mathcal{M}, \xi \in T_x \mathcal{M}$, and $\gamma(t)$ the geodesic such that $\gamma(0) = x, \dot{\gamma}(0) = \xi$. The exponential mapping Exp_x : $T_x \mathcal{M} \to \mathcal{M}$ is defined as $\operatorname{Exp}_x(\xi) \coloneqq \gamma(1)$.

• Corollary:
$$\operatorname{Exp}_{x}(t\xi) \coloneqq \gamma(t)$$
, for $t \in [0, 1]$.

▶ $\forall x, y \in \mathcal{M}$, the mapping $\operatorname{Exp}_{x}^{-1}(y) \in \operatorname{T}_{x}\mathcal{M}$ is called logarithm mapping.

Example. Let $\mathcal{M} = \mathcal{S}^{n-1}$, then the exponential mapping at $x \in \mathcal{S}^{n-1}$ is

$$y = \text{Exp}_x(\xi) = x\cos(\|\xi\|) + \frac{\xi}{\|\xi\|}\sin(\|\xi\|),$$

and the Riemannian logarithm is

$$\operatorname{Log}_{x}(y) = \xi = \arccos(x^{\top} y) \frac{\operatorname{P}_{x} y}{\|\operatorname{P}_{x} y\|},$$

where $y \equiv \gamma(1)$ and P_x is the projector onto $(\operatorname{span}(x))^{\perp}$, i.e., $P_x = I - xx^{\top}$.

Riemannian exponential and logarithm on St(n, p)

Explicit expression (with the canonical metric) of the Riemannian exponential on the Stiefel manifold St(n, p):

$$Y = \operatorname{Exp}_{X}(\xi) = Z(1) = \begin{bmatrix} X \ X_{\perp} \end{bmatrix} \exp\left(\begin{bmatrix} X^{\top}\xi & -(X_{\perp}^{\top}\xi)^{\top} \\ X_{\perp}^{\top}\xi & O \end{bmatrix}\right) \begin{bmatrix} I_{p} \\ O_{(n-p)\times p} \end{bmatrix}.$$

There is no explicit expression for the Riemannian logarithm on the Stiefel manifold.

Retractions/2

Properties:

- (i) $R_x(0_x) = x$, where 0_x is the zero element of $T_x \mathcal{M}$.
- (ii) With the identification $T_{0_x}T_x\mathcal{M} \simeq T_x\mathcal{M}$, R_x satisfies the local rigidity condition

$$\mathrm{DR}_{x}(0_{x})=\mathrm{id}_{\mathrm{T}_{x}\mathcal{M}}.$$

Two main purposes:

- Turn points of $T_x \mathcal{M}$ into points of \mathcal{M} .
- Transform cost functions f: M → ℝ defined in a neighborhood of x ∈ M into cost functions f_{R_x} := f ∘ R_x defined on the vector space T_xM.

Line search on a manifold (reprise)

Algorithm 1: Line-search minimization on manifolds.

- 1 Given $f: \mathcal{M} \to \mathbb{R}$, starting point $x_0 \in \mathcal{M}$;
- 2 $k \leftarrow 0;$
- 3 repeat
- 4 choose a descent direction $\eta_k \in T_{x_k} \mathcal{M}$;
- 5 choose a retraction $R_{x_k} : T_{x_k} \mathcal{M} \to \mathcal{M};$
- 6 choose a step length $t_k \in \mathbb{R}$;
- 7 | set $x_{k+1} = \mathbf{R}_{x_k}(t_k \eta_k);$

$$k \leftarrow k+1$$

9 **until** x_{k+1} sufficiently minimizes f;

The manifold of fixed-rank matrices

Our optimization problem is defined over

 $\mathcal{M}_r = \{ X \in \mathbb{R}^{n \times n} : \operatorname{rank}(X) = r \}.$

► Theorem: \mathcal{M}_r is a smooth Riemannian submanifold embedded in $\mathbb{R}^{n \times n}$ of dimension r(2n-r).

Optimizing on submanifold M_r : [Vandereycken 2013]

Alternative characterization

• Using the singular value decomposition (SVD), we have the equivalent characterization

$$\mathcal{M}_r = \{U\Sigma V^{\top}: \ U^{\top}U = I_r, \ V^{\top}V = I_r, \ \Sigma = \operatorname{diag}(\sigma_i), \ \sigma_1 \geq \cdots \geq \sigma_r > 0\}.$$

- Only 2nr + r coefficients instead of n^2 . If $r \ll n$, then big memory savings.
- Perform the calculations directly in the factorized format.

\mathcal{M}_r : Tangent vectors

• A tangent vector ξ at $X = U\Sigma V^{\top}$ is represented as

$$\begin{split} \boldsymbol{\xi} &= \boldsymbol{U}\boldsymbol{M}\boldsymbol{V}^\top + \boldsymbol{U}_p\boldsymbol{V}^\top + \boldsymbol{U}\boldsymbol{V}_p^\top,\\ \boldsymbol{M} &\in \mathbb{R}^{n\times r}, \quad \boldsymbol{U}_p \in \mathbb{R}^{n\times r}, \quad \boldsymbol{U}_p^\top\boldsymbol{U} = \boldsymbol{0}, \quad \boldsymbol{V}_p \in \mathbb{R}^{n\times r}, \quad \boldsymbol{V}_p^\top\boldsymbol{V} = \boldsymbol{0}. \end{split}$$

► We can rewrite it as

$$\xi = (UM + U_p)V^\top + UV_p^\top.$$

 $\rightsquigarrow \xi$ is a rank-2*r* bounded matrix. Useful in implementation.

 \mathcal{M}_r : Metric, projection, gradient, retraction

► The Riemannian metric is

 $g_X(\xi,\eta) = \langle \xi,\eta \rangle = \operatorname{Tr}(\xi^\top \eta), \text{ with } X \in \mathcal{M}_r \text{ and } \xi,\eta \in \operatorname{T}_X \mathcal{M}_r,$

where ξ , η are seen as matrices in the ambient space $\mathbb{R}^{n \times n}$.

Orthogonal projection onto the tangent space at X is

$$P_{T_X \mathcal{M}_r} \colon \mathbb{R}^{n \times n} \to T_X \mathcal{M}_r, \qquad Z \to P_U Z P_V + P_U^{\perp} Z P_V + P_U Z P_V^{\perp},$$

▶ Riemannian gradient: projection onto $T_X M_r$ of the Euclidean gradient

grad $f(X) = P_{T_X \mathcal{M}_r}(\nabla f(X)).$

▶ Retraction R_X : $T_X \mathcal{M}_r \to \mathcal{M}_r$. Typical: truncated SVD.

Many retractions for M_r : [Absil/Oseledets 2015]

Allen–Cahn equation/1

- Reaction-diffusion equation that models the process of phase separation in multi-component alloy systems.
 - Other applications include: mean curvature flows, two-phase incompressible fluids, complex dynamics of dendritic growth, and image segmentation ...
- ▶ In its simplest form, it reads

$$\frac{\partial w}{\partial t} = \varepsilon \Delta w + w - w^3.$$

► It is a stiff, time-dependent PDE.

Figure: Time evolution of the solution w to the Allen–Cahn equation, with ERK4, $h = 10^{-4}$.

Allen-Cahn equation: [Allen/Cahn 1972, Allen/Cahn 1973]

Allen–Cahn equation/2 - low-rank evolution

We build the functional

$$\min_{w} \mathcal{F}(w) \coloneqq \int_{\Omega} \frac{\varepsilon h}{2} \|\nabla w\|^2 + \frac{(1-h)}{2} w^2 + \frac{h}{4} w^4 - \widetilde{w} \cdot w \, \mathrm{d}x \, \mathrm{d}y$$

Figure: Panel (a): error versus time for the preconditioned low-rank evolution of the Allen–Cahn equation. Panel (b): error at T = 15 versus time step *h*.

An example of factorized gradient

- "LYAP" functional: $\mathcal{F}(w(x,y)) = \int_{\Omega} \frac{1}{2} \|\nabla w(x,y)\|^2 \gamma(x,y) w(x,y) dx dy.$
- The gradient of \mathcal{F} is the variational derivative $\frac{\delta \mathcal{F}}{\delta w} = -\Delta w \gamma$.
- The discretized Euclidean gradient in matrix form is given by

$$G = AW + WA - \Gamma$$

with A is the second-order periodic finite difference differentiation matrix.

► The first-order optimality condition $G = AW + WA - \Gamma = 0$ is a Lyapunov (or Sylvester) equation.

 \rightsquigarrow Factorized Euclidean gradient:

