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Overview

Preprint: Implicit low-rank Riemannian schemes for the time integration of stiff
partial differential equations, M. Sutti and B. Vandereycken, submitted, arXiv
preprint arXiv:2305.11532.

Contributions:

▶ Preconditioner for the Riemannian trust-region (RTR) method on the
manifold of fixed-rank matrices (not in this talk).

▶ Applications within implicit numerical integration schemes to solve stiff,
time-dependent PDEs.

This talk:

I. Motivation for considering the low-rank format.

II. The Allen–Cahn equation.

III. The Fisher–KPP equation.
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https://arxiv.org/abs/2305.11532
https://arxiv.org/abs/2305.11532


Motivation for the low-rank format/1

▶ Often, like in CFD, we need to discretize a problem to represent the
continuous solution.

▶ For high-dimensional problems (e.g., Schrödinger equation, Black–Scholes
equation. . . ), a “naive” discretization with n degrees of freedom in each
dimension, leads to nd coefficients.

▶ For example, if d = 15, and n = 100 grid points in each dimension, we would
need 8000 TB of memory to store all coefficients in double precision:

10015 × 64 bits
8× 1012

= 8× 1018 = 8000 TB.

NB: 64 is the number of bits necessary to represent a number in double precision arithmetic.
1 TB = 240 bytes ≈ 1012 bytes (1 TB is one trillion bytes).

▶ Since the number of coefficients scales exponentially by d but the accuracy is
typically determined by n, this poses a limitation on the size of the problems
{ Curse of dimensionality.

3 / 16



Matrix factorization

▶ One of the possible workarounds{ matrix factorization!

X =UΣV ⊤ : U⊤U = Ir , V
⊤V = Ir , Σ = diag(σi), σ1 ⩾ · · · ⩾ σr > 0.
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▶ Only 2nr + r coefficients instead of n2. If r ≪ n, then big memory savings.

▶ Perform the calculations directly in the factorized format.
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Motivation for the low-rank format/2
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▶ Storing a dense 5000× 5000 matrix in double precision takes
50002 × 8/220 ≈ 191 MB.
▶ If it has rank 10 and we store only its factors, it takes

(2× 5000× 10+10)× 8/220 = 0.76 kB.

▶ If it has rank 100 and we store only its factors, it takes
(2× 5000× 100+100)× 8/220 = 7.63 MB.

▶ For a matrix stored in the dense format, the storage complexity grows as n2,
but if the matrix is stored in low-rank format, then the storage grows as nr .
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The Allen–Cahn equation/1

▶ Reaction-diffusion equation that models the process of phase separation in
multi-component alloy systems.
▶ Other applications include mean curvature flows, two-phase incompressible

fluids, complex dynamics of dendritic growth, and image segmentation.

▶ In its simplest form, it reads

∂w
∂t

= ε∆w+w −w3,

where w ≡ w(x, t), x ∈Ω = [−π,π]2, and t ≥ 0.

▶ It is a stiff PDE with a low-order polynomial nonlinearity and a diffusion
term ε∆w.

Allen–Cahn equation: [Allen/Cahn 1972, Allen/Cahn 1973]
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https://www.sciencedirect.com/science/article/pii/0001616072900375
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The Allen–Cahn equation/2 - “naive” discretization

▶ Spatial discretization on a uniform grid, 256× 256 grid points.
▶ Storage of each matrix: 2562 × 8/220 ≈ 0.5 MB.

▶ The Laplacian ∆w is discretized using central finite differences with periodic
boundary conditions.

▶ Numerical time integration with a fourth-order Runge–Kutta method (ERK4),
h = 10−4, because of the condition for an explicit scheme to be stable (very
similar to the CFL condition). Very small time step!

(a) t = 0 (b) t = 0.5 (c) t = 2 (f) t = 15

Figure: Time evolution of the solution w to the Allen–Cahn equation, with ERK4, h = 10−4.
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The Allen–Cahn equation/3 - stationary phase

∂w
∂t

= ε∆w+w −w3.

Figure: Left panel: time evolution of the RHS of the Allen–Cahn equation. Right panel:
numerical solution w at time t = 15, with ERK4, h = 10−4.

▶ For “big enough” t, ∂w/∂t ≈ 0, i.e., the solution w enters a steady state.
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The Allen–Cahn equation/4 - rank assessment
▶ Question: is it low rank? Preliminary study on the dense-format solution.

Figure: Time evolution of the rank of the numerical solutionWref to the Allen–Cahn
equation, with ERK4, h = 10−4.
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Implicit numerical integration scheme & low-rank format

▶ The reference solution in the previous slides is computed with an explicit
fourth-order Runge–Kutta method (ERK4), h = 10−4. Very small!

{ Time to perform the entire simulation until t = 15: ≈ 36.5 minutes!

▶ We could use an implicit numerical integration scheme for the time
integration.

+ It allows for a larger time step than its explicit counterpart.

− Typically requires the solution of nonlinear equations, which is very
expensive.

{ Idea: Using the low-rank format to reduce the computational cost together
with an implicit numerical time integration scheme that avoids the restriction on
the time step due to the stability condition!
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The Allen–Cahn equation/5 - low-rank simulation

(a) (b)

Figure: Panel (a): error versus time for the low-rank evolution of the Allen–Cahn equation.
Panel (b): rank evolution of the reference dense-format solutionWref.
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The Allen–Cahn equation/6 - low-rank simulation
▶ We can take very big time steps, and still, the numerical solution at the final

time has an acceptable error with respect to the reference solution.
▶ Time to perform the simulation until t = 15, with h = 0.05: ≈ 5 minutes.

▶ Time to perform the simulation until t = 15, with h = 1.00: ≈ 12.5 seconds.

{ Compare with the ≈ 36.5 minutes for the dense format!

(a) (b)

Figure: Panel (a): error versus time for the low-rank evolution of the Allen–Cahn equation.
Panel (b): error at T = 15 versus time step h. 12 / 16



Fisher–KPP equation/1

▶ Nonlinear reaction-diffusion equation.
▶ Models biological population, chemical reaction dynamics with diffusion, theory

of combustion to study flame propagation, nuclear reactors, . . .

▶ In its simplest form, it reads

∂w
∂t

=
∂2w

∂x2
+ r(ω)w(1−w),

where w ≡ w(x, t;ω), r(ω) is a species’s reaction rate or growth rate,
modeled as a random variable that follows a uniform law r ∼ U [1/4,1/2].

▶ Spatial domain: x ∈ [0,40], time domain: t ∈ [0,10].
▶ Homogeneous Neumann boundary conditions, i.e.,

∀t ∈ [0,10], ∂w
∂x

(0, t) = 0,
∂w
∂x

(40, t) = 0.

Fisher–KPP equation: [Fisher 1937, Kolmogorov/Petrowsky/Piskunov 1937]
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Fisher–KPP equation/2
▶ The initial condition is of the form

w(x,0;ω) = a(ω)e−b(ω)x2 ,

where a ∼ U [1/5, 2/5] and b ∼ U [1/10, 11/10]. The random variables a, b,
and r are all independent, and we consider Nr = 1000 realizations.

(a) (b) (c)

Figure: Fisher–KPP reference solution computed with an IMEX-CNLF scheme. Panel (a): all
the 1000 realizations at t = 0. Panel (b): all the 1000 realizations at t = 10. Panel (c):
numerical rank history.
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Fisher–KPP equation/3 - low-rank evolution

(a) (b)

Figure: Panel (a): rank history for the low-rank version (LR-CNLF) compared to the
reference solution (CNLF), for h = 0.00625. Panel (b): discrete L2-norm of the error versus
time, for several h.
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Conclusions
Take-home message: Using a low-rank format allows us to reduce the
computational cost and use an implicit numerical time integration scheme that
avoids the time step restriction of the stability condition!

Pros and cons:

+ Efficient simulations with the low-rank format.

+ Solid, well-understood theory behind (not discussed in this talk).

− If the problem does not really admit a low-rank representation, then there is
no advantage over using dense matrices.

Outlook:

▶ Use higher-order numerical integration methods.

▶ Other applications in mind, e.g., diffusion problems in mathematical biology
or problems with low-rank tensor structure.

Thank you for your attention!
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