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Overview

Preprint: Implicit low-rank Riemannian schemes for the time integration of stiff
partial differential equations, M. Sutti and B. Vandereycken, submitted, arXiv
preprint arXiv:2305.11532.

Contributions:

» Preconditioner for the Riemannian trust-region (RTR) method on the
manifold of fixed-rank matrices (not in this talk).

> Applications within implicit numerical integration schemes to solve stiff,
time-dependent PDEs.
This talk:
I. Motivation for considering the low-rank format.
II. The Allen-Cahn equation.
II. The Fisher-KPP equation.


https://arxiv.org/abs/2305.11532
https://arxiv.org/abs/2305.11532

Motivation for the low-rank format/1

» Often, like in CFD, we need to discretize a problem to represent the
continuous solution.

» For high-dimensional problems (e.g., Schrédinger equation, Black-Scholes
equation...), a “naive” discretization with n degrees of freedom in each
dimension, leads to 1n? coefficients.

» For example, if d = 15, and n = 100 grid points in each dimension, we would
need 8000 TB of memory to store all coefficients in double precision:

10015 x 64 bit
S T XOR OIS 8108 = 8000 TB.

8x 1012
NB: 64 is the number of bits necessary to represent a number in double precision arithmetic.
1TB = 240 bytes ~ 1012 bytes (1 TB is one trillion bytes).

» Since the number of coefficients scales exponentially by d but the accuracy is
typically determined by n, this poses a limitation on the size of the problems
~> Curse of dimensionality.



Matrix factorization

> One of the possible workarounds ~»> matrix factorization!
X=UXv': U'U=1, V'V =1, X=diag(o;), 01 >--->0,>0.

n

n r r
N
)
n X = n Nk

» Only 2nr + r coefficients instead of n°. If r < 1, then big memory savings.

» Perform the calculations directly in the factorized format.



Motivation for the low-rank format/2

n

n r r
N - I
b))
n X = n Nl

> Storing a dense 5000 x 5000 matrix in double precision takes
50007 x 8/22% ~ 191 MB.

> If it has rank 10 and we store only its factors, it takes
(2x5000% 10 +10) x 8/220 = 0.76 kB.

> If it has rank 100 and we store only its factors, it takes
(2% 5000 % 100 +100) x 8/220 = 7.63 MB.

» For a matrix stored in the dense format, the storage complexity grows as n?,

but if the matrix is stored in low-rank format, then the storage grows as nr.



The manifold of fixed-rank matrices M,

> We will define an optimization problem over

M, ={X e R"": rank(X) =r}.

~> M, has a smooth structure ...

2 x 2 example:

_|x %
e [? z ] ’
Parametrization:
rank(X) = 1 & xz = -2p? and
x,z#0.

T Y

» Theorem: M, is a smooth Riemannian submanifold embedded in R™*" of
dimension r(2n —r).

Optimizing on submanifold M,: [Vandereycken 2013]


https://epubs.siam.org/doi/10.1137/110845768

The Allen—-Cahn equation/1

» Reaction-diffusion equation that models the process of phase separation in
multi-component alloy systems.

> Other applications include mean curvature flows, two-phase incompressible
fluids, complex dynamics of dendritic growth, and image segmentation.

» In its simplest form, it reads

Jw
- :sAw+w—w3,

ot
where w = w(z, t), x € Q = [-7,7]? and t > 0.

» It is a stiff PDE with a low-order polynomial nonlinearity and a diffusion
term eAw.

Allen-Cahn equation: [Allen/Cahn 1972, Allen/Cahn 1973]


https://www.sciencedirect.com/science/article/pii/0001616072900375
https://www.sciencedirect.com/science/article/pii/0036974873900732

The Allen—-Cahn equation/2 - “naive” discretization

» Spatial discretization on a uniform grid, 256 x 256 grid points.
> Storage of each matrix: 2562 x 8/2%0 ~ 0.5 MB.

» The Laplacian Aw is discretized using central finite differences with periodic
boundary conditions.

» Numerical time integration with a fourth-order Runge—Kutta method (ERK4),
h = 1074, because of the condition for an explicit scheme to be stable (very
similar to the CFL condition). Very small time step!
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Figure: Time evolution of the solution w to the Allen-Cahn equation, with ERK4, h = 1074,



The Allen—-Cahn equation/3 - stationary phase
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Figure: Left panel: time evolution of the RHS of the Allen-Cahn equation. Right panel:
numerical solution w at time ¢t = 15, with ERK4, h = 1074,
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> For “big enough” t, dw/dt ~ 0, i.e., the solution w enters a steady state.



The Allen—-Cahn equation/4 - rank assessment

> Question: is it low rank? Preliminary study on the dense-format solution.
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Figure: Time evolution of the rank of the numerical solution Wy to the Allen-Cahn
equation, with ERK4, h = 1074,



Implicit numerical integration scheme & low-rank format

» The reference solution in the previous slides is computed with an explicit
fourth-order Runge-Kutta method (ERK4), h = 107, Very small!

~> Time to perform the entire simulation until t = 15: ~ 36.5 minutes!

> We could use an implicit numerical integration scheme for the time
integration.

@ 1t allows for a larger time step than its explicit counterpart.

@ Typically requires the solution of nonlinear equations, which is very
expensive.

~> Idea: Using the low-rank format to reduce the computational cost together
with an implicit numerical time integration scheme that avoids the restriction on
the time step due to the stability condition!



The Allen—-Cahn equation/5 - low-rank simulation
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Figure: Panel (a): error versus time for the low-rank evolution of the Allen—Cahn equation.
Panel (b): rank evolution of the reference dense-format solution Wies.



The Allen—-Cahn equation/6 - low-rank simulation

> We can take very big time steps, and still, the numerical solution at the final
time has an acceptable error with respect to the reference solution.

> Time to perform the simulation until + = 15, with & = 0.05: ~ 5 minutes.
> Time to perform the simulation until t = 15, with i = 1.00: ~ 12.5 seconds.

~»> Compare with the = 36.5 minutes for the dense format!
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Figure: Panel (a): error versus time for the low-rank evolution of the Allen-Cahn equation.
Panel (b): error at T = 15 versus time step h.



Fisher-KPP equation/1

» Nonlinear reaction-diffusion equation.

> Models biological population, chemical reaction dynamics with diffusion, theory
of combustion to study flame propagation, nuclear reactors, ...

» In its simplest form, it reads
ow Jw
E = ﬁ + r(a))w(l —'LV),
where w = w(x, t; w), r(w) is a species’s reaction rate or growth rate,
modeled as a random variable that follows a uniform law r ~ U/ [1/4,1/2].

» Spatial domain: x € [0,40], time domain: ¢ € [0,10].

» Homogeneous Neumann boundary conditions, i.e.,

Vte[0,10], aa—Z(o, t)=0, %(40, t)=0.

Fisher-KPP equation: [Fisher 1937, Kolmogorov/Petrowsky/Piskunov 1937]


https://www.sciencedirect.com
https://www.sciencedirect.com

Fisher-KPP equation/2

» The initial condition is of the form
w(x, 0;w) = a(w)e_b(“’)xz,

where a ~ U [1/5, 2/5] and b ~ U [1/10, 11/10]. The random variables a4, b,

and r are all independent, and we consider N, = 1000 realizations.
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Figure: Fisher—KPP reference solution computed with an IMEX-CNLF scheme. Panel (a): all
the 1000 realizations at t = 0. Panel (b): all the 1000 realizations at ¢ = 10. Panel (c):
numerical rank history.



Fisher-KPP equation/3 - low-rank evolution
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Figure: Panel (a): rank history for the low-rank version (LR-CNLF) compared to the

reference solution (CNLF), for & = 0.00625. Panel (b): discrete L2-norm of the error versus
time, for several h.



Conclusions

Take-home message: Using a low-rank format allows us to reduce the
computational cost and use an implicit numerical time integration scheme that
avoids the time step restriction of the stability condition!

Pros and cons:
@ Efficient simulations with the low-rank format.
@ Solid, well-understood theory behind (not discussed in this talk).

@ If the problem does not really admit a low-rank representation, then there is
no advantage over using dense matrices.

Outlook:
» Use higher-order numerical integration methods.

» Other applications in mind, e.g., diffusion problems in mathematical biology
or problems with low-rank tensor structure.

Thank you for your attention!



Bonus material



Optimization problems on matrix manifolds

> We can state the optimization
problem as

min f (x),

where f: M — R is the objective M
function and M is some matrix
manifold.

> Matrix manifold: any manifold that is constructed from IR"*P by taking
either embedded submanifolds or quotient manifolds.

» Examples of embedded submanifolds: orthogonal Stiefel manifold, manifold of
symplectic matrices, manifold of fixed-rank matrices, ...

» Example of quotient manifold: the Grassmann manifold.

> Motivation: by exploiting the underlying geometric structure, only feasible
points are considered!

Manifold optimization: [Edelman et al. 1998, Absil et al. 2008, Boumal 2023], ...


https://epubs.siam.org/doi/10.1137/S0895479895290954
https://press.princeton.edu/absil
https://www.cambridge.org/core/books/an-introduction-to-optimization-on-smooth-manifolds/EAF2B35457B7034AC747188DC2FFC058

Problems considered: variational problems

» Variational problem, called “LYAP” herein,

mu%n}'(w(x,y)) = J;) %Ile(x,y)ll2 -y(x,v)w(x,v)dxdy
such that w =0 on 0dQ,
_(2d 2 _ 2 :
where V = (Z’ a—y), Q =[0,1]* and v is the source term.

» Discretization on a uniform grid: regardless of the specific form of F, we
obtain the general formulation

mMiInF(W) st. We{XeR"™: rank(X)=r},

where F denotes the discretization of the functional F.

“LYAP” variational problem: [Henson 2003, Gratton/Sartenaer/Toint 2008,
Wen/Goldfarb 2009, S./Vandereycken 2021, ...]


https://www.osti.gov/servlets/purl/15002749
https://epubs.siam.org/doi/10.1137/050623012
https://epubs.siam.org/doi/10.1137/08071524X
https://epubs.siam.org/doi/10.1137/20M1337430

Riemannian manifold and gradient

A manifold M endowed with a smoothly-varying inner product (called
Riemannian metric ) is called Riemannian manifold.

~> A couple (M, g), i.e., a manifold with a Riemannian metric on it.

Let f: M — R. E.g., the objective function in an optimization problem.

~» For any embedded submanifold:

» Riemannian gradient: projection
onto Ty M of the Euclidean
gradient

grad f (X) = Pty m(Vf (X))

~> Vf(X)1is the Euclidean gradient of f(X).

Matrix and vector calculus: The Matrix Cookbook, www.matrixcalculus.org, ...
Automatic differentiation on low-rank manifolds: [Novikov/Rakhuba/Oseledets 2022]


https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.matrixcalculus.org
https://epubs.siam.org/doi/10.1137/20M1356774

Riemannian trust-region (RTR) method

Algorithm 1: Riemannian trust-region (RTR)
1 Given A >0, A; € (0,A)
2 fori=1,2,... do
3 Define the second-order model

s Ty M= R & o f (3 grad f (3), )+ 5 (Hless f(w)[EL€).

4 Trust-region subproblem: compute 7; by solving

n; =argminm;(&) st ||E]l <A

Compute p; = (£(0) = f;(1:))/(m;(0) = m; (1;).

5
6 if p; > 0.05 then
7 ‘ Accept step and set x;,1 = Ry, (77;)-
8 else
9 ‘ Reject step and set x;,; = x;.
10 end if
1 Radius update: set
min(2A;,A) if p; > 0.75 and |In;]| = A;,
Ais1 =90.25\l7ill - if p; £0.25,
A; otherwise.
12 end for

TR method: [Goldfeld/Quandt/Trotter 1966, Sorensen 1982, Fletcher 1980/1987 ...]
RTR method: [Absil/Baker/Gallivan 2007]


https://www.jstor.org/stable/1909768
https://digital.library.unt.edu/ark:/67531/metadc283479/
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118723203
https://link.springer.com/article/10.1007/s10208-005-0179-9

The manifold of fixed-rank matrices M,

» Our optimization problem is defined over

M, ={X e R"™": rank(X) =r}.

~> M, has a smooth structure ...

2 x 2 example:

_|x %
e [y z ] ’
Parametrization:
rank(X) =1 & xz=-2p? and
x,z# 0.

» Theorem: M, is a smooth Riemannian submanifold embedded in R™*" of
dimension r(2n —r).

Optimizing on submanifold M,: [Vandereycken 2013]


https://epubs.siam.org/doi/10.1137/110845768

M,: Alternative characterization

» Using the singular value decomposition (SVD), we have the equivalent
characterization

M, ={UXVT: UTU =1, V'V =1, X =diag(o;), 01 >+ >0, > 0}.

n

n r r
N - I
X
n X = n Nk

» Only 217 + r coefficients instead of n?. If r < n, then big memory savings.

> Perform the calculations directly in the factorized format.



M,: Tangent vectors

> A tangent vector & at X = UXVT is represented as
E=UMVT + UpVT + UVPT,
MeR™, U,eR™, U;—U =0, V,eR"™, VPTV =0.
> We can rewrite it as
E=(UM+ UP)VT + UVpT.

~» & is a rank-2r bounded matrix. Useful in implementation.



v

v

: Metric, projection, gradient, retraction

The Riemannian metric is
gx(&,m)=(&Eny=Tr(ETy), with XeM, and &,1eTxM,,

where &, 17 are seen as matrices in the ambient space R™*".

Orthogonal projection onto the tangent space at X is

PTXMT:]RHXH_)TXMW Z—>PUzP\/+Pi}va+PUzPJ‘}

Riemannian gradient: projection onto Tx M, of the Euclidean gradient
grad f(X) = Pr, g, (V£ (X))

Retraction Ry : Ty M, — M,. Typical: truncated SVD.

Many retractions for M,: [Absil/Oseledets 2015]


https://link.springer.com/article/10.1007/s10589-014-9714-4

Riemannian Hessian and preconditioning/1

» In the case of Riemannian submanifolds, the full Riemannian Hessian of f at
x € M is given by the projected Euclidean Hessian plus the curvature part

Hess f (x)[£] = P, V2 f(x) P, + P (“curvature terms”) P,.
~> Use P, V?f(x) P, as a preconditioner in RTR.
> For LYAP, we can get the symmetric 72-by-n? matrix

Hy =Py(AQI+I®A)D.

» Inverse of Hy ~» good candidate for a preconditioner.
A Not inverted directly, since this would cost O(n®).

» A good preconditioner should reduce the number of iterations of the inner
trust-region solver. It has to be effective and cheap to compute.

Symmetric positive semidefinite matrices with fixed rank: [Vandereycken/Vandewalle 2010]


https://epubs.siam.org/doi/10.1137/090764566

Riemannian Hessian and preconditioning/2

> Applying the preconditioner in X € M, means solving for & € Ty M the
system
Hy vec(€) = vec(r),

where 77 € Tx M is a known tangent vector.

» This is equivalent to
Px(AE+EA) =1.

» Using the definition of the orthogonal projector onto Tx M, , we obtain
Py(AE +EA)Py + Py (AL + EA)Py + Py(AE + EA)Py =11,
which is equivalent to the system

Py(AE +EA)Py = PynPy,
PH(A&E + EA)Py = PEyPy,
Py(AE + EA)PE = Pyn Py

~» Many (boring) calculations, but the numerical results are quite striking!



Retractions

> Move in the direction of & while remaining constrained to M.

» Smooth mapping R, : T, M — M with a local condition that preserves
gradients at x.

» The Riemannian exponential mapping is also a retraction, but it is not
computationally efficient.

» Retractions: first-order approximation of the Riemannian exponential!

Constructing retractions: [Absil/Malick 2012]


https://epubs.siam.org/doi/10.1137/100802529

An example of factorized gradient
> “LYAP” functional: F (w( JQ 2||Vw X, )||2 y(xv)w(x,y)dxdy.

> The gradient of F is the variational derlvatlve =-Aw-y.
» The discretized Euclidean gradient in matrix form is given by

G=AW+WA-T.

with A is the second-order periodic finite difference differentiation matrix.

» The first-order optimality condition G = AW + WA —I" = 0 is a Lyapunov
(or Sylvester) equation.

~> Factorized Euclidean gradient:

=[AU U U] bldiag(x, £, %) [V AV v, ]




