
Numerical simulations using low-rank
approximation

Marco Sutti

Postdoctoral fellow at NCTS國家理論科學研究中心數學組、博士後
2024 ATAT in HPSC, Hsinchu

March 23, 2024



Overview

Preprint: Implicit low-rank Riemannian schemes for the time integration of stiff
partial differential equations, M. Sutti and B. Vandereycken, submitted, arXiv
preprint arXiv:2305.11532.

Contributions:

▶ Preconditioner for the Riemannian trust-region (RTR) method on the
manifold of fixed-rank matrices (not in this talk).

▶ Applications within implicit numerical integration schemes to solve stiff,
time-dependent PDEs.

This talk:

I. Motivation for considering the low-rank format.

II. The Allen–Cahn equation.

III. The Fisher–KPP equation.

2 / 17

https://arxiv.org/abs/2305.11532
https://arxiv.org/abs/2305.11532


Motivation for the low-rank format/1

▶ Often, like in CFD, we need to discretize a problem to represent the
continuous solution.

▶ For high-dimensional problems (e.g., Schrödinger equation, Black–Scholes
equation. . . ), a “naive” discretization with n degrees of freedom in each
dimension, leads to nd coefficients.

▶ For example, if d = 15, and n = 100 grid points in each dimension, we would
need 8000 TB of memory to store all coefficients in double precision:

10015 × 64 bits
8× 1012 = 8× 1018 = 8000 TB.

NB: 64 is the number of bits necessary to represent a number in double precision arithmetic.
1 TB = 240 bytes ≈ 1012 bytes (1 TB is one trillion bytes).

▶ Since the number of coefficients scales exponentially by d but the accuracy is
typically determined by n, this poses a limitation on the size of the problems
{ Curse of dimensionality.

3 / 17



Matrix factorization

▶ One of the possible workarounds{ matrix factorization!

X =UΣV ⊤ : U⊤U = Ir , V
⊤V = Ir , Σ = diag(σi), σ1 ⩾ · · · ⩾ σr > 0.

Σ

U

V
T

r n

X

n

n = n

r

r r

▶ Only 2nr + r coefficients instead of n2. If r ≪ n, then big memory savings.

▶ Perform the calculations directly in the factorized format.

4 / 17



Motivation for the low-rank format/2

Σ

U

V
T

r n

X

n

n = n

r

r r

▶ Storing a dense 5000× 5000 matrix in double precision takes
50002 × 8/220 ≈ 191 MB.
▶ If it has rank 10 and we store only its factors, it takes

(2× 5000× 10+10)× 8/220 = 0.76 kB.

▶ If it has rank 100 and we store only its factors, it takes
(2× 5000× 100+100)× 8/220 = 7.63 MB.

▶ For a matrix stored in the dense format, the storage complexity grows as n2,
but if the matrix is stored in low-rank format, then the storage grows as nr .

5 / 17



The manifold of fixed-rank matricesMr

▶ We will define an optimization problem over

Mr = {X ∈Rn×n : rank(X) = r}.

{Mr has a smooth structure . . .

2× 2 example:

X =
[
x −2y
y z

]
.

Parametrization:
rank(X) = 1⇔ xz = −2y2 and
x,z , 0.

▶ Theorem:Mr is a smooth Riemannian submanifold embedded in R
n×n of

dimension r(2n− r).

Optimizing on submanifoldMr : [Vandereycken 2013]
6 / 17

https://epubs.siam.org/doi/10.1137/110845768


The Allen–Cahn equation/1

▶ Reaction-diffusion equation that models the process of phase separation in
multi-component alloy systems.
▶ Other applications include mean curvature flows, two-phase incompressible

fluids, complex dynamics of dendritic growth, and image segmentation.

▶ In its simplest form, it reads

∂w
∂t

= ε∆w+w −w3,

where w ≡ w(x, t), x ∈Ω = [−π,π]2, and t ≥ 0.

▶ It is a stiff PDE with a low-order polynomial nonlinearity and a diffusion
term ε∆w.

Allen–Cahn equation: [Allen/Cahn 1972, Allen/Cahn 1973]
7 / 17

https://www.sciencedirect.com/science/article/pii/0001616072900375
https://www.sciencedirect.com/science/article/pii/0036974873900732


The Allen–Cahn equation/2 - “naive” discretization

▶ Spatial discretization on a uniform grid, 256× 256 grid points.
▶ Storage of each matrix: 2562 × 8/220 ≈ 0.5 MB.

▶ The Laplacian ∆w is discretized using central finite differences with periodic
boundary conditions.

▶ Numerical time integration with a fourth-order Runge–Kutta method (ERK4),
h = 10−4, because of the condition for an explicit scheme to be stable (very
similar to the CFL condition). Very small time step!

(a) t = 0 (b) t = 0.5 (c) t = 2 (f) t = 15

Figure: Time evolution of the solution w to the Allen–Cahn equation, with ERK4, h = 10−4.

8 / 17



The Allen–Cahn equation/3 - stationary phase

∂w
∂t

= ε∆w+w −w3.

Figure: Left panel: time evolution of the RHS of the Allen–Cahn equation. Right panel:
numerical solution w at time t = 15, with ERK4, h = 10−4.

▶ For “big enough” t, ∂w/∂t ≈ 0, i.e., the solution w enters a steady state.

9 / 17



The Allen–Cahn equation/4 - rank assessment
▶ Question: is it low rank? Preliminary study on the dense-format solution.

Figure: Time evolution of the rank of the numerical solutionWref to the Allen–Cahn
equation, with ERK4, h = 10−4.

10 / 17



Implicit numerical integration scheme & low-rank format

▶ The reference solution in the previous slides is computed with an explicit
fourth-order Runge–Kutta method (ERK4), h = 10−4. Very small!

{ Time to perform the entire simulation until t = 15: ≈ 36.5 minutes!

▶ We could use an implicit numerical integration scheme for the time
integration.

+ It allows for a larger time step than its explicit counterpart.

− Typically requires the solution of nonlinear equations, which is very
expensive.

{ Idea: Using the low-rank format to reduce the computational cost together
with an implicit numerical time integration scheme that avoids the restriction on
the time step due to the stability condition!

11 / 17



The Allen–Cahn equation/5 - low-rank simulation

(a) (b)

Figure: Panel (a): error versus time for the low-rank evolution of the Allen–Cahn equation.
Panel (b): rank evolution of the reference dense-format solutionWref.

12 / 17



The Allen–Cahn equation/6 - low-rank simulation
▶ We can take very big time steps, and still, the numerical solution at the final

time has an acceptable error with respect to the reference solution.
▶ Time to perform the simulation until t = 15, with h = 0.05: ≈ 5 minutes.

▶ Time to perform the simulation until t = 15, with h = 1.00: ≈ 12.5 seconds.

{ Compare with the ≈ 36.5 minutes for the dense format!

(a) (b)

Figure: Panel (a): error versus time for the low-rank evolution of the Allen–Cahn equation.
Panel (b): error at T = 15 versus time step h. 13 / 17



Fisher–KPP equation/1

▶ Nonlinear reaction-diffusion equation.
▶ Models biological population, chemical reaction dynamics with diffusion, theory

of combustion to study flame propagation, nuclear reactors, . . .

▶ In its simplest form, it reads

∂w
∂t

=
∂2w

∂x2
+ r(ω)w(1−w),

where w ≡ w(x, t;ω), r(ω) is a species’s reaction rate or growth rate,
modeled as a random variable that follows a uniform law r ∼ U [1/4,1/2].

▶ Spatial domain: x ∈ [0,40], time domain: t ∈ [0,10].
▶ Homogeneous Neumann boundary conditions, i.e.,

∀t ∈ [0,10], ∂w
∂x

(0, t) = 0,
∂w
∂x

(40, t) = 0.

Fisher–KPP equation: [Fisher 1937, Kolmogorov/Petrowsky/Piskunov 1937]
14 / 17

https://www.sciencedirect.com
https://www.sciencedirect.com


Fisher–KPP equation/2
▶ The initial condition is of the form

w(x,0;ω) = a(ω)e−b(ω)x2 ,

where a ∼ U [1/5, 2/5] and b ∼ U [1/10, 11/10]. The random variables a, b,
and r are all independent, and we consider Nr = 1000 realizations.

(a) (b) (c)

Figure: Fisher–KPP reference solution computed with an IMEX-CNLF scheme. Panel (a): all
the 1000 realizations at t = 0. Panel (b): all the 1000 realizations at t = 10. Panel (c):
numerical rank history.

15 / 17



Fisher–KPP equation/3 - low-rank evolution

(a) (b)

Figure: Panel (a): rank history for the low-rank version (LR-CNLF) compared to the
reference solution (CNLF), for h = 0.00625. Panel (b): discrete L2-norm of the error versus
time, for several h.

16 / 17



Conclusions
Take-home message: Using a low-rank format allows us to reduce the
computational cost and use an implicit numerical time integration scheme that
avoids the time step restriction of the stability condition!

Pros and cons:

+ Efficient simulations with the low-rank format.

+ Solid, well-understood theory behind (not discussed in this talk).

− If the problem does not really admit a low-rank representation, then there is
no advantage over using dense matrices.

Outlook:

▶ Use higher-order numerical integration methods.

▶ Other applications in mind, e.g., diffusion problems in mathematical biology
or problems with low-rank tensor structure.

Thank you for your attention!
17 / 17



Bonus material



Optimization problems on matrix manifolds
▶ We can state the optimization

problem as

min
x∈M

f (x),

where f : M→R is the objective
function andM is some matrix
manifold.

M

x

▶ Matrix manifold: any manifold that is constructed from R
n×p by taking

either embedded submanifolds or quotient manifolds.

▶ Examples of embedded submanifolds: orthogonal Stiefel manifold, manifold of
symplectic matrices, manifold of fixed-rank matrices, . . .

▶ Example of quotient manifold: the Grassmann manifold.

▶ Motivation: by exploiting the underlying geometric structure, only feasible
points are considered!

Manifold optimization: [Edelman et al. 1998, Absil et al. 2008, Boumal 2023], . . .

https://epubs.siam.org/doi/10.1137/S0895479895290954
https://press.princeton.edu/absil
https://www.cambridge.org/core/books/an-introduction-to-optimization-on-smooth-manifolds/EAF2B35457B7034AC747188DC2FFC058


Problems considered: variational problems

▶ Variational problem, called “LYAP” herein,min
w
F (w(x,y)) =

∫
Ω

1
2∥∇w(x,y)∥2 −γ(x,y)w(x,y)dxdy

such that w = 0 on ∂Ω,

where ∇ =
(
∂
∂x ,

∂
∂y

)
,Ω = [0,1]2 and γ is the source term.

▶ Discretization on a uniform grid: regardless of the specific form of F , we
obtain the general formulation

min
W

F(W ) s.t. W ∈ {X ∈Rn×n : rank(X) = r},

where F denotes the discretization of the functional F .

“LYAP” variational problem: [Henson 2003, Gratton/Sartenaer/Toint 2008,
Wen/Goldfarb 2009, S./Vandereycken 2021, . . . ]

https://www.osti.gov/servlets/purl/15002749
https://epubs.siam.org/doi/10.1137/050623012
https://epubs.siam.org/doi/10.1137/08071524X
https://epubs.siam.org/doi/10.1137/20M1337430


Riemannian manifold and gradient

A manifoldM endowed with a smoothly-varying inner product (called
Riemannian metric g) is called Riemannian manifold.

{ A couple (M, g), i.e., a manifold with a Riemannian metric on it.

Let f : M→R. E.g., the objective function in an optimization problem.

{ For any embedded submanifold:

▶ Riemannian gradient: projection
onto TXM of the Euclidean
gradient

gradf (X) = PTXM(∇f (X)).

TXM

M

X

∇f (X)

gradf (X)

{ ∇f (X) is the Euclidean gradient of f (X).

Matrix and vector calculus: The Matrix Cookbook, www.matrixcalculus.org, . . .
Automatic differentiation on low-rank manifolds: [Novikov/Rakhuba/Oseledets 2022]

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.matrixcalculus.org
https://epubs.siam.org/doi/10.1137/20M1356774


Riemannian trust-region (RTR) method
Algorithm 1: Riemannian trust-region (RTR)

1 Given ∆̄ > 0, ∆1 ∈ (0, ∆̄)
2 for i = 1,2, . . . do
3 Define the second-order model

mi : TxiM→R, ξ 7→ f (xi)+
〈
gradf (xi),ξ

〉
+
1
2
〈
Hessf (xi)[ξ],ξ

〉
.

4 Trust-region subproblem: compute ηi by solving

ηi = argminmi(ξ) s.t. ∥ξ∥ ≤ ∆i .

5 Compute ρi = (f̂ (0)− f̂i(ηi))/(mi(0)−mi(ηi)).
6 if ρi ≥ 0.05 then
7 Accept step and set xi+1 = Rxi (ηi).
8 else
9 Reject step and set xi+1 = xi .

10 end if
11 Radius update: set

∆i+1 =


min(2∆i , ∆̄) if ρi ≥ 0.75 and ∥ηi∥ = ∆i ,

0.25∥ηi∥ if ρi ≤ 0.25,
∆i otherwise.

12 end for

TxM

M

ξ

x

Rx(ξ)

TR method: [Goldfeld/Quandt/Trotter 1966, Sorensen 1982, Fletcher 1980/1987 . . . ]
RTR method: [Absil/Baker/Gallivan 2007]

https://www.jstor.org/stable/1909768
https://digital.library.unt.edu/ark:/67531/metadc283479/
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118723203
https://link.springer.com/article/10.1007/s10208-005-0179-9


The manifold of fixed-rank matricesMr

▶ Our optimization problem is defined over

Mr = {X ∈Rn×n : rank(X) = r}.

{Mr has a smooth structure . . .

2× 2 example:

X =
[
x −2y
y z

]
.

Parametrization:
rank(X) = 1⇔ xz = −2y2 and
x,z , 0.

▶ Theorem:Mr is a smooth Riemannian submanifold embedded in R
n×n of

dimension r(2n− r).

Optimizing on submanifoldMr : [Vandereycken 2013]

https://epubs.siam.org/doi/10.1137/110845768


Mr : Alternative characterization

▶ Using the singular value decomposition (SVD), we have the equivalent
characterization

Mr = {UΣV ⊤ : U⊤U = Ir , V
⊤V = Ir , Σ = diag(σi), σ1 ⩾ · · · ⩾ σr > 0}.

Σ

U

V
T

r n

X

n

n = n

r

r r

▶ Only 2nr + r coefficients instead of n2. If r ≪ n, then big memory savings.

▶ Perform the calculations directly in the factorized format.



Mr : Tangent vectors

▶ A tangent vector ξ at X =UΣV ⊤ is represented as

ξ =UMV ⊤ +UpV
⊤ +UV ⊤p ,

M ∈Rr×r , Up ∈Rn×r , U⊤p U = 0, Vp ∈Rn×r , V ⊤p V = 0.

▶ We can rewrite it as

ξ = (UM +Up)V
⊤ +UV ⊤p .

{ ξ is a rank-2r bounded matrix. Useful in implementation.



Mr : Metric, projection, gradient, retraction

▶ The Riemannian metric is

gX(ξ,η) = ⟨ξ,η⟩ = Tr(ξ⊤η), with X ∈Mr and ξ,η ∈ TXMr ,

where ξ , η are seen as matrices in the ambient space Rn×n.

▶ Orthogonal projection onto the tangent space at X is

PTXMr
: Rn×n→ TXMr , Z→ PU ZPV +P⊥U ZPV +PU ZP⊥V .

▶ Riemannian gradient: projection onto TXMr of the Euclidean gradient

gradf (X) = PTXMr
(∇f (X)).

▶ Retraction RX : TXMr →Mr . Typical: truncated SVD.

Many retractions forMr : [Absil/Oseledets 2015]

https://link.springer.com/article/10.1007/s10589-014-9714-4


Riemannian Hessian and preconditioning/1

▶ In the case of Riemannian submanifolds, the full Riemannian Hessian of f at
x ∈M is given by the projected Euclidean Hessian plus the curvature part

Hessf (x)[ξ] = Px∇2f (x)Px + Px (“curvature terms”)Px.

{ Use Px∇2f (x)Px as a preconditioner in RTR.

▶ For LYAP, we can get the symmetric n2-by-n2 matrix

HX = PX(A⊗ I + I ⊗A)PX .

▶ Inverse of HX { good candidate for a preconditioner.

▲! Not inverted directly, since this would cost O(n6).
▶ A good preconditioner should reduce the number of iterations of the inner

trust-region solver. It has to be effective and cheap to compute.

Symmetric positive semidefinite matrices with fixed rank: [Vandereycken/Vandewalle 2010]

https://epubs.siam.org/doi/10.1137/090764566


Riemannian Hessian and preconditioning/2
▶ Applying the preconditioner in X ∈Mr means solving for ξ ∈ TXM the

system
HX vec(ξ) = vec(η),

where η ∈ TXM is a known tangent vector.

▶ This is equivalent to
PX(Aξ + ξA) = η.

▶ Using the definition of the orthogonal projector onto TXMr , we obtain

PU (Aξ + ξA)PV + P ⊥U (Aξ + ξA)PV + PU (Aξ + ξA)P ⊥V = η,

which is equivalent to the system
PU (Aξ + ξA)PV = PUηPV ,

P ⊥U (Aξ + ξA)PV = P ⊥U ηPV ,

PU (Aξ + ξA)P ⊥V = PUηP
⊥
V .

...

{Many (boring) calculations, but the numerical results are quite striking!



Retractions

▶ Move in the direction of ξ while remaining constrained toM.

▶ Smooth mapping Rx : TxM→M with a local condition that preserves
gradients at x.

TxM

M

ξ

x

Rx(ξ)

▶ The Riemannian exponential mapping is also a retraction, but it is not
computationally efficient.

▶ Retractions: first-order approximation of the Riemannian exponential!

Constructing retractions: [Absil/Malick 2012]

https://epubs.siam.org/doi/10.1137/100802529


An example of factorized gradient
▶ “LYAP” functional: F (w(x,y)) =

∫
Ω

1
2∥∇w(x,y)∥2 −γ(x,y)w(x,y)dxdy.

▶ The gradient of F is the variational derivative δF
δw = −∆w −γ .

▶ The discretized Euclidean gradient in matrix form is given by

G = AW +WA− Γ .
with A is the second-order periodic finite difference differentiation matrix.

▶ The first-order optimality condition G = AW +WA− Γ = 0 is a Lyapunov
(or Sylvester) equation.

{ Factorized Euclidean gradient:

G =
[
AU U Uγ

]
blkdiag

(
Σ, Σ, Σγ

) [
V AV Vγ

]⊤
.

AU







U Uγ

][











Vγ







V AV

T


