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Overview

Paper: Riemannian gradient descent for spherical area-preserving mappings, M.
Sutti and M.-H. Yueh, AIMS Math., Vol. 9(7), 19414-19445, 12 June 2024.

Main contributions:

(i) Combine tools from Riemannian optimization and computational geometry
to propose a Riemannian gradient descent (RGD) method for computing
spherical area-preserving mappings of topological spheres.

(if) Numerical experiments on several mesh models demonstrate the accuracy
and efficiency of the algorithm.

(iii) Competitiveness and efficiency of our algorithm over three state-of-the-art
methods for computing area-preserving mappings.
This talk:
I. Simplicial surfaces and mappings, stretch and authalic energy.
II. Optimization on matrix manifolds, fundamental ideas and tools.

II. Numerical experiments.
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I. Simplicial surfaces and mappings, authalic and stretch
energies



Simplicial surfaces and mappings/1

» A simplicial surface M is the !
underlying set of a simplicial e—
2-complex
K(M)=F(M)UEM)UV(M)

composed of vertices
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oriented triangular faces

F(M) = {T€ = [Viwvji’vke] | Vi Vjpr Vi € V(M)};nzl 7

and undirected edges

EM) ={[v,v;]1 [v;,v}, vi] € F(M) for some v € V(M)}.

A simplicial mapping f: M — IR? is a particular type of piecewise affine
mapping with the restriction mapping f |, being affine, for every v € F(M).
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Simplicial surfaces and mappings/2

» We denote

foi=foo)=(FL 12 12)

for every vy € V(M).
» The (image of the) mapping f can
be represented as a matrix

(] A £ R

f= =[f £ £]

f;’lr f 111 f i‘l2 f 713

or a vector

S2

> A simplicial mapping f: M — IR? is said to be area-preserving if |f ()| = ||
for every T € F(M).
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Authalic energy

The authalic (or equiareal) energy for simplicial mappings f: M — R is
Ea(f) = Es(f) = Alf),

where A(f) is the image area, Eg is the stretch energy defined as

Es(f) = 5 veelf) (13 ® Ls ) vect),

where Lg(f) is the weighted Laplacian matrix Lg(f), defined by
L ulermlos(Hlijx if [vi,vj] € E(M),

[Ls(f)ij == LeailLs(Nlie ifj=1,
0 otherwise,
in which wg(f) is the modified 9

cotangent weight defined as

cot(0;(MIf ([vi vy, ve)) &) BO
2|[vi, vj, vi]| '
)

[ws(f)]ijx=
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Stretch energy/1

» The stretch energy can be reformulated as [see Lemma 3.1, Yueh 2023]

2
k- Y L

|7l
T€F(M)

» (If the area-preserving simplicial mapping exists) then every minimizer of
Es(f) is an area-preserving mapping and vice-versa [Theorem 3.3,
Yueh 2023], i.e.,
f = argmin Eq(g)
lg(M)I=IM|
if and only if |f (7)| = || for every T € F(M).

> It is also proved that E4(f) > 0 and the equality holds if and only if f is
area-preserving [Corollary 3.4, Yueh 2023].

Theoretical foundation of the stretch energy minimization for area-preserving
simplicial mappings: [Yueh 2023]
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https://epubs.siam.org/doi/10.1137/22M1505062

Stretch energy/2

> Due to the optimization process, A(f) varies, hence we introduce a prefactor
|M|/A(f) and define the normalized stretch energy as

M

E(f):Tf)

Es(f).

» To perform numerical optimization we need to compute the Euclidean
gradient of E(f). By applying the formula VEg(f) =2 (I3 ® Ls(f)) vec(f)
from [Yueh 2023], the gradient of E(f) can be formulated as

Ve =[S Es)
- Vs Es(FIV
_2IM| IM|Es(f)

< 3 ®Ls(f)) vec(f) - VA(f).

—Af) A(f)?
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II. Riemannian optimization framework and geometry



Riemannian optimization/1

» The Riemannian optimization
framework solves constrained
optimization problems where the
constraints have a geometric
nature.

> Exploit the underlying geometric

structure of the problems. The e
optimization variables are (

constrained to a smooth manifold.

In our setting: The problem is formulated on a power manifold of # unit
spheres embedded in R3, and we use the RGD method for minimizing the
cost function on this power manifold.

» Traditional optimization methods rely on the Euclidean space structure.

> For instance, the steepest descent method for minimizing g: R” — R updates
X by moving in the direction dj of the anti-gradient of g, by a step size ay
chosen according to an appropriate line-search rule.

Manifold optimization: [Edelman et al. 1998, Absil et al. 2008, Boumal 2023], ...
The image above has been taken from the Manopt website: https://www.manopt.org/
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https://epubs.siam.org/doi/10.1137/S0895479895290954
https://press.princeton.edu/absil
https://www.cambridge.org/core/books/an-introduction-to-optimization-on-smooth-manifolds/EAF2B35457B7034AC747188DC2FFC058
https://www.manopt.org/

Riemannian optimization/2

» A line-search method in the
Riemannian framework determines
at x; on a manifold M a search
direction £ on T, M.

> Xy, is then determined by a line
search along a curve a — Ry(a)
where R, : TyM — M is the
retraction mapping.

> Repeat for x;,; taking the role of
Xk-

» Search directions can be the negative of the Riemannian gradient, leading to
the Riemannian gradient descent method (RGD).

> Other choices of search directions ~» other methods, e.g., Riemannian
trust-region method or Riemannian BFGS.

Riemannian trust-region method: [Absil/Baker/Gallivan 2007], Riemannian BFGS:
[Ring/Wirth 2012]
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https://link.springer.com/article/10.1007/s10208-005-0179-9
https://epubs.siam.org/doi/10.1137/11082885X

Geometry of the unit sphere S

The unit sphere S? is a Riemannian submanifold of R® defined as
$?=(xeR3: x"x=1}.
The Riemannian metric on the unit sphere is inherited from R3 ie,

(5; 77))( = ngl g! ne szzy

where T, S? is the tangent space to 52
at x € §2, defined as the set of all
vectors orthogonal to x in R3, ie.,

T,S?={zeR3: xTz =0}

The projector Pr_g2: R3 — T,S?%is
defined by
)

Pszz(Z) = (13 —XX )Z.

In the following, points on the unit sphere are denoted by f, (the vertices of the

simplicial mapping f), and tangent vectors are represented by &,.
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Geometry of the power manifold (Sz)”

We aim to minimize the function E(f) = E(fy,...,f,), where each f,, £ =1,...,n,
lives on the same manifold S2.

~» This leads us to consider the power manifold of # unit spheres
(s2)" =5%x8%x---52,

—_——————
n times

with the metric of $? extended elementwise.

In the next slides, we present the tools from Riemannian geometry needed to
generalize gradient descent to this manifold, namely:

n
> The projector onto the tangent space to (SZ) is used to compute the
Riemannian gradient.
n n
» The projection onto (52) turns points of R"*3 into points of (52) .
> The retraction turns an objective function defined on R"*3 into an objective
n
function defined on the manifold (S 2) .
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r
Projector onto the tangent space to (52)

Here, the points are denoted by f, € R3, £ = 1,...,7, so we write
PTféSZ = I3 - fgf;

It clearly changes for every vertex f,. The projector from IR”*? onto the tangent

space at f to the power manifold (S 2)n is a mapping

P )n: R™3 - Tf(Sz)n;

Tf(S2
and can be represented by a block diagonal matrix of size 31 x 3#, i.e.,
Pr, 52
: i Prys2

PTf(52 )n = blkdlag(PTf1 S2, Pszsz,. ey PTf” 52 ) = £y

PTf” S2
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Projection onto the power manifold (S 2 )”

The projection of a single vertex f, from R? to the unit sphere S? is given by the
normalization

— f€
f,= .
T IEL
Hence, the projection of the whole of f onto the power manifold (Sz)n is given
by

P(Sz)n: R™ - (s2)",

defined by

~ 1 1 1 T
f— f:=dia ) e, f, £, - £ | .
g(||f1||2 B ||fn||2)[ b |

This representative matrix is only shown for illustrative purposes; in the actual
implementation, we use row-wise normalization of f.
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Retraction

» The retraction of a tangent vector
&y from Tf€82 to §2 is a mapping
Rg,: TfZSZ — §2, defined by

fo+&

Re, (&) = T el

n
» For the power manifold (52) , the retraction of all the tangent vectors &,

¢=1,...,n,is a mapping R¢: Tf(SZ)n — (Sz)n, defined by

T . 1 T
[51 {n] |—>d1ag(”f1+£1”2 ||f +€n”2)[f1+£1 fn+£n].

Constructing retractions: [Absil/Malick 2012]
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Riemannian gradient descent method/1

» The Riemannian gradient of the
objective function E is given by

the projection onto Tf(S2)n of the
Euclidean gradient of E, namely,

grad E(f) =Py (VE()

» This is always the case for
embedded submanifolds; see Prop.
3.6.1in Absil et al., 2008.
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https://press.princeton.edu/absil

Riemannian gradient descent method/2

n

Algorithm 1: The RGD method on (S 2)

1 Given objective function E, power manifold (52)’1, initial iterate(®

f0) e (52)", projector PT (Sz)n from R™ to Tf(sz)n, retraction R¢ from
1

Te(5%)" to (52)";
Result: Sequence of iterates {f*)}.
2 k< 0;
3 while f ) does not sufficiently minimizes E do
4 Compute the Euclidean gradient of the objective function VE(f (k)y,
5 Compute the Riemannian gradient as grad E(f(k)) = PT (k)(sz)n(VE(f(k)));
f

6 Choose the anti-gradient direction d%) = —grad E(f¥));

7 Use a line-search procedure to compute a step size @y > 0 that satisfies the
sufficient decrease condition;

s | Set f,*1) = Ry (ad®);

9 k—k+1;

o end while

-

(*) The initial mapping £(©) (52 )n is computed via the fixed-point iteration (FPI) method of Yueh et

al., 2019, until the first increase in energy is detected.
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III. Numerical experiments



The benchmark triangular mesh models

Model Name Right Hand David Head Cortical Surface Bull
# Faces 8,808 21,338 30,000 34,504
# Vertices 4,406 10,671 15,002 17,254
og
Model Name Bulldog Lion Statue Gargoyle Max Planck
# Faces 99,590 100,000 100,000 102,212
# Vertices 49,797 50,002 50,002 51,108
Model Name Bunny Chess King Art Statuette Bimba
# Faces 111,364 263,712 895,274 1,005,146
# Vertices 55,684 131,858 447,639 502,575
5
=
A
<
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Resulting spherical mappings

Right Hand David Head Cortical Surface Bull

Bulldog Lion Statue Gargoyle Max Planck

Bunny Chess King Art Statuette Bimba

e
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Convergence behavior of RGD

Right Hand - David Head i Cortical Surface Bull
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Comparison with other methods/1

Comparison with the fixed-point iteration method for minimizing the authalic
energy E4 of Yueh et al., 2019.

Fixed point method [Yueh et al. 19] Our RGD method

Model Name SD/Mean EA(f) Time  SD/Mean EA(f) Time
Right Hand 04598  2.92x10° 1.35 01204  9.40x107%2  4.07
David Head 00169  3.58x1073 430 00156  3.04x1073  9.16
Cortical Surface 0.0174 3.21x1073 5.62 0.0200 3.72x1073  16.01
Bull 0.1876  4.59x1071  6.90 0.1348  2.19x107!  18.89
Bulldog 0.1833  3.99x10°! 2222 00343  1.27x107% 6193
Lion Statue 0.2064  5.28x1071 2367 0.1894  4.54x107! 7676
Gargoyle 41020  4.85x10%  36.10 0.0646  4.76x107%  80.52
Max Planck 0.1844  1.67x10'  25.99 0.0525  3.39x107%  75.60
Bunny 0.0394 3.96x1072 3578 0.0390 1.91x1072  89.62
Chess King 10903  1.79x10! 88.04 0.0647  5.23x107% 207.47

Art Statuette 0.0908 1.07x10°!  342.95 0.0405 2.10x1072 654.57
Bimba Statue 0.0932  7.42x1072  305.00 0.0512  3.29x107%2 77536

Fixed-point iteration method for minimizing the authalic energy: [Yueh et al. 2019]
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Comparison with other methods/2

Comparison with the adaptive area-preserving parameterization for genus-zero
closed surfaces proposed by Choi et al., 2022.

Choi et al., 2022 Our RGD method

Model Name SD/Mean EA(f) Time SD/Mean Ex(f) Time
Right Hand 18.3283  4.84x 103  218.03 0.1204  9.40x 1072  4.07
David Head 0.0426  2.27x1072  298.76 0.0156  3.04x1073  9.16
Cortical Surface  0.6320 1.14x10° 420.20 0.0200 3.72x1073  16.01
Bull 8.5565 1.82x 103 34.42 0.1348  2.19x107!  18.89
Bulldog 9.2379 1.22x103 183.94 0.0343  1.27x1072  61.93
Lion Statue 0.2626  8.96x1071  1498.91 0.1894  4.54x107! 7676
Gargoyle 0.3558 1.30x10° 148335 0.0646  4.76x107%  80.52
Max Planck 11.6875  1.49x10°3 195.39 0.0525  3.39x1072  75.60
Bunny 27.6014  8.94x10%  157.87 0.0390 1.91x107% 89.62
Chess King 11.8300  1.65x 103 608.55 0.0647  5.23x1072  207.47
Art Statuette 394.4414  9.93x10°  2284.79 0.0405 2.10x1072 654.57
Bimba Statue 0.5110 2.01x10% 1677334  0.0512  3.29x10°2 77536

Adaptive area-preserving parameterization for genus-zero closed surfaces:

[Choi/Giri/Kumar 2022]
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Comparison with other methods/3

Comparison with the spherical optimal transportation mapping proposed by Cui

et al,, 2019. The executable fails to output a mapping for eight mesh models

among the twelve, which are not shown in the table.

Cui et al., 2019

Our RGD method

Model Name SD/Mean EA(f) #lts. SD/Mean EA(f) Time
David Head 0.4189  2.25x10° 27 0.0156  3.04x1073 9.16
Cortical Surface 0.5113 3.11x10° 27 0.0200 3.72x1073  16.01
Bulldog 0.8665  1.00x10" 33 00343  1.27x1072 61.93
Max Planck 05619  4.38x10° 25 0.0525  3.39x1072 75.60

Spherical optimal transportation mapping: [Cui et al. 2019]
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Surface registration/1

> A registration mapping between surfaces M and M; is a bijective mapping
g: My — M. An ideal registration mapping keeps important landmarks
aligned while preserving specified geometry properties.

» Framework for the computation of landmark-aligned area-preserving
parameterizations of genus-zero closed surfaces.

» Illustration with the landmark-aligned morphing process from one brain to
another.

Problem statement: Given a set of landmark pairs {(p;, q;) | pi € Mo, q; € My},
our goal is to compute an area-preserving simplicial mapping g: My — M, that
satisfies g(p;) = g;, fori=1,...,m.
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Surface registration/2

> First, we compute area-preserving parameterizations fy: My — S? and
fi: My — S? of surfaces M, and M, respectively.

Jfo
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Surface registration/3

Q-9 0

» The simplicial mapping h: S? — S? that satisfies h o fo(p;) = f1(q;), for
i=1,...,m, can be carried out by minimizing the registration energy

Ep(h)=Es(h)+ ) Aillio folps) = fi(q))l
i=1

> Let h be the matrix representation of 4. The gradient of Eg with respect to h
can be formulated as

VERr(h) =2 (I3 ® Lg(h))vec(h) + vec(r),
where r is the matrix of the same size as h given by
Hi,:) = 2 ( —(fi(g;))7) if p; is a landmark,
a (0,0, O) otherwise.
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Surface registration/4

> In practice, we define the midpoints c; of each landmark pairs on S? as

i = 5 (olpa) + filai)),

fori=1,...,m, and compute o and h; on S? that satisfy hg o fo(p;) = c; and
hy o f1(q;) = c;, respectively. The registration mapping g: My — M; is
obtained by the composition g = fl_1 o h[l ohgo fy.

fo fi

52 N
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Brain morphing

» Brain morphing via the linear homotopy method.

» A landmark-aligned morphing process from M, to M; can be constructed
by the linear homotopy H: M x [0,1] — RR? defined as

Hw,t)=(1-t)v+tg(v).

»> We demonstrate the morphing process from one brain to another brain by
four snapshots at four different values of t.

(b)t=05 = ) t=15
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Conclusions

Summary:

» Combining the tools of Riemannian optimization and computational
geometry, we introduced an RGD method for computing spherical
area-preserving mappings of genus-zero closed surfaces.

> We conducted extensive numerical experiments on various mesh models to
demonstrate the algorithm’s stability and effectiveness.

> We applied our algorithm to the practical problem of landmark-aligned
surface registration between two human brain models.
Outlook:

» Enhance the speed of convergence of the algorithm using appropriate
Riemannian generalizations of the conjugate gradient method or the limited
memory BFGS method.

» Target genus-one closed surfaces, e.g., the ring torus.

Thank you for your attention!
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