# Riemannian gradient descent for spherical area-preserving mappings

### Marco Sutti Joint work with Mei-Heng Yueh

NCTS Postdoc Symposium

September 9, 2024

#### Overview

Paper: Riemannian gradient descent for spherical area-preserving mappings, M. Sutti and M.-H. Yueh, AIMS Math., Vol. 9(7), 19414–19445, 12 June 2024.

#### Main contributions:

- (i) Combine tools from Riemannian optimization and computational geometry to propose a Riemannian gradient descent (RGD) method for computing spherical area-preserving mappings of topological spheres.
- (ii) Numerical experiments on several mesh models demonstrate the accuracy and efficiency of the algorithm.
- (iii) Competitiveness and efficiency of our algorithm over three state-of-the-art methods for computing area-preserving mappings.

This talk:

- I. Simplicial surfaces and mappings, stretch and authalic energy.
- II. Optimization on matrix manifolds, fundamental ideas and tools.
- III. Numerical experiments.

## I. Simplicial surfaces and mappings, authalic and stretch energies

#### Simplicial surfaces and mappings/1

► A simplicial surface *M* is the underlying set of a simplicial 2-complex  $\mathcal{K}(\mathcal{M}) = \mathcal{F}(\mathcal{M}) \cup \mathcal{E}(\mathcal{M}) \cup \mathcal{V}(\mathcal{M})$ composed of vertices

$$\mathcal{V}(\mathcal{M}) = \left\{ v_{\ell} = \left( v_{\ell}^1, v_{\ell}^2, v_{\ell}^2 \right)^{\top} \in \mathbb{R}^3 \right\}_{\ell=1}^n$$

oriented triangular faces

$$\mathcal{F}(\mathcal{M}) = \left\{ \tau_{\ell} = \left[ v_{i_{\ell}}, v_{j_{\ell}}, v_{k_{\ell}} \right] \mid v_{i_{\ell}}, v_{j_{\ell}}, v_{k_{\ell}} \in \mathcal{V}(\mathcal{M}) \right\}_{\ell=1}^{m},$$

and undirected edges

$$\mathcal{E}(\mathcal{M}) = \left\{ [v_i, v_j] \mid [v_i, v_j, v_k] \in \mathcal{F}(\mathcal{M}) \text{ for some } v_k \in \mathcal{V}(\mathcal{M}) \right\}.$$

• A simplicial mapping  $f : \mathcal{M} \to \mathbb{R}^3$  is a particular type of piecewise affine mapping with the restriction mapping  $f|_{\tau}$  being affine, for every  $\tau \in \mathcal{F}(\mathcal{M})$ .





#### Simplicial surfaces and mappings/2

We denote

$$\mathbf{f}_{\ell} \coloneqq f(v_{\ell}) = \left(f_{\ell}^{1}, f_{\ell}^{2}, f_{\ell}^{3}\right)^{\mathsf{T}},$$

for every  $v_{\ell} \in \mathcal{V}(\mathcal{M})$ .

The (image of the) mapping f can be represented as a matrix

$$\mathbf{f} = \begin{bmatrix} \mathbf{f}_1^\top \\ \vdots \\ \mathbf{f}_n^\top \end{bmatrix} = \begin{bmatrix} f_1^1 & f_1^2 & f_1^3 \\ \vdots & \vdots & \vdots \\ f_n^1 & f_n^2 & f_n^3 \end{bmatrix} =: \begin{bmatrix} \mathbf{f}^1 & \mathbf{f}^2 & \mathbf{f}^3 \end{bmatrix},$$

or a vector

$$\operatorname{vec}(\mathbf{f}) = \begin{bmatrix} \mathbf{f}^1 \\ \mathbf{f}^2 \\ \mathbf{f}^3 \end{bmatrix}.$$



A simplicial mapping  $f : \mathcal{M} \to \mathbb{R}^3$  is said to be area-preserving if  $|f(\tau)| = |\tau|$  for every  $\tau \in \mathcal{F}(\mathcal{M})$ .

#### Authalic energy

The authalic (or equiareal) energy for simplicial mappings  $f\colon \mathcal{M}\to\mathbb{R}^3$  is  $E_A(f)=E_S(f)-\mathcal{A}(f),$ 

where  $\mathcal{A}(f)$  is the image area,  $E_S$  is the stretch energy defined as

$$E_{\mathcal{S}}(f) = \frac{1}{2} \operatorname{vec}(\mathbf{f})^{\top} (I_3 \otimes L_{\mathcal{S}}(f)) \operatorname{vec}(\mathbf{f}),$$

where  $L_S(f)$  is the weighted Laplacian matrix  $L_S(f)$ , defined by

$$[L_{S}(f)]_{i,j} = \begin{cases} -\sum_{[v_{i},v_{j},v_{k}] \in \mathcal{F}(\mathcal{M})} [\omega_{S}(f)]_{i,j,k} & \text{if } [v_{i},v_{j}] \in \mathcal{E}(\mathcal{M}), \\ -\sum_{\ell \neq i} [L_{S}(f)]_{i,\ell} & \text{if } j = i, \\ 0 & \text{otherwise,} \end{cases}$$

in which  $\omega_S(f)$  is the modified cotangent weight defined as

$$[\omega_{S}(f)]_{i,j,k} = \frac{\cot(\theta_{i,j}^{k}(f))|f([v_{i}, v_{j}, v_{k}])|}{2|[v_{i}, v_{j}, v_{k}]|}.$$



#### Stretch energy/1

▶ The stretch energy can be reformulated as [see Lemma 3.1, Yueh 2023]

$$E_S(f) = \sum_{\tau \in \mathcal{F}(\mathcal{M})} \frac{|f(\tau)|^2}{|\tau|}.$$

• (If the area-preserving simplicial mapping exists) then every minimizer of  $E_S(f)$  is an area-preserving mapping and vice-versa [Theorem 3.3, Yueh 2023], i.e.,

$$f = \operatorname*{argmin}_{|g(\mathcal{M})| = |\mathcal{M}|} E_S(g)$$

if and only if  $|f(\tau)| = |\tau|$  for every  $\tau \in \mathcal{F}(\mathcal{M})$ .

▶ It is also proved that  $E_A(f) \ge 0$  and the equality holds if and only if *f* is area-preserving [Corollary 3.4, Yueh 2023].

Theoretical foundation of the stretch energy minimization for area-preserving simplicial mappings: [Yueh 2023]

#### Stretch energy/2

Due to the optimization process, A(f) varies, hence we introduce a prefactor |M|/A(f) and define the normalized stretch energy as

$$E(f) = \frac{|\mathcal{M}|}{\mathcal{A}(f)} E_{\mathcal{S}}(f).$$

► To perform numerical optimization we need to compute the Euclidean gradient of E(f). By applying the formula  $\nabla E_S(f) = 2(I_3 \otimes L_S(f)) \operatorname{vec}(\mathbf{f})$  from [Yueh 2023], the gradient of E(f) can be formulated as

$$\nabla E(f) = \nabla \left( \frac{|\mathcal{M}|}{\mathcal{A}(f)} E_S(f) \right)$$
  
=  $\frac{|\mathcal{M}|}{\mathcal{A}(f)} \nabla E_S(f) + E_S(f) \nabla \frac{|\mathcal{M}|}{\mathcal{A}(f)}$   
=  $\frac{2|\mathcal{M}|}{\mathcal{A}(f)} (I_3 \otimes L_S(f)) \operatorname{vec}(\mathbf{f}) - \frac{|\mathcal{M}| E_S(f)}{\mathcal{A}(f)^2} \nabla \mathcal{A}(f)$ 

II. Riemannian optimization framework and geometry

#### Riemannian optimization/1

- The Riemannian optimization framework solves constrained optimization problems where the constraints have a geometric nature.
  - Exploit the underlying geometric structure of the problems. The optimization variables are constrained to a smooth manifold.



- ▶ In our setting: The problem is formulated on a power manifold of n unit spheres embedded in  $\mathbb{R}^3$ , and we use the RGD method for minimizing the cost function on this power manifold.
- ▶ Traditional optimization methods rely on the Euclidean space structure.
  - For instance, the steepest descent method for minimizing  $g: \mathbb{R}^n \to \mathbb{R}$  updates  $\mathbf{x}_k$  by moving in the direction  $\mathbf{d}_k$  of the anti-gradient of g, by a step size  $\alpha_k$  chosen according to an appropriate line-search rule.

Manifold optimization: [Edelman et al. 1998, Absil et al. 2008, Boumal 2023], ... The image above has been taken from the Manopt website: https://www.manopt.org/

#### Riemannian optimization/2

- ► A line-search method in the Riemannian framework determines at x<sub>k</sub> on a manifold M a search direction \$\xi\$ on T<sub>x</sub>M.
- ►  $\mathbf{x}_{k+1}$  is then determined by a line search along a curve  $\alpha \mapsto R_{\mathbf{x}}(\alpha \boldsymbol{\xi})$ where  $R_{\mathbf{x}} : T_{\mathbf{x}}M \to M$  is the retraction mapping.
- Repeat for  $\mathbf{x}_{k+1}$  taking the role of  $\mathbf{x}_k$ .



- Search directions can be the negative of the Riemannian gradient, leading to the Riemannian gradient descent method (RGD).
  - ▶ Other choices of search directions ~> other methods, e.g., Riemannian trust-region method or Riemannian BFGS.

Riemannian trust-region method: [Absil/Baker/Gallivan 2007], Riemannian BFGS: [Ring/Wirth 2012]

#### Geometry of the unit sphere $S^2$

The unit sphere  $S^2$  is a Riemannian submanifold of  $\mathbb{R}^3$  defined as

$$S^2 = \{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{x}^\top \mathbf{x} = 1 \}.$$

The Riemannian metric on the unit sphere is inherited from  $\mathbb{R}^3$ , i.e.,

$$\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle_{\mathbf{x}} = \boldsymbol{\xi}^{\top} \boldsymbol{\eta}, \quad \boldsymbol{\xi}, \, \boldsymbol{\eta} \in \mathbf{T}_{\mathbf{x}} S^2,$$

where  $T_{\mathbf{x}}S^2$  is the tangent space to  $S^2$  at  $\mathbf{x} \in S^2$ , defined as the set of all vectors orthogonal to  $\mathbf{x}$  in  $\mathbb{R}^3$ , i.e.,

$$\mathbf{T}_{\mathbf{x}}S^2 = \{\mathbf{z} \in \mathbb{R}^3 : \mathbf{x}^\top \mathbf{z} = 0\}.$$

The projector  $P_{T_xS^2}$ :  $\mathbb{R}^3 \to T_xS^2$  is defined by

$$\mathbf{P}_{\mathbf{T}_{\mathbf{x}}S^2}(\mathbf{z}) = (I_3 - \mathbf{x}\mathbf{x}^\top)\mathbf{z}.$$



In the following, points on the unit sphere are denoted by  $f_{\ell}$  (the vertices of the simplicial mapping f), and tangent vectors are represented by  $\xi_{\ell}$ .

## Geometry of the power manifold $(S^2)^n$

We aim to minimize the function  $E(f) = E(\mathbf{f}_1, \dots, \mathbf{f}_n)$ , where each  $\mathbf{f}_{\ell}$ ,  $\ell = 1, \dots, n$ , lives on the same manifold  $S^2$ .

 $\sim$  This leads us to consider the power manifold of *n* unit spheres

$$\left(S^2\right)^n = \underbrace{S^2 \times S^2 \times \cdots S^2}_{n},$$

n times

with the metric of  $S^2$  extended elementwise.

In the next slides, we present the tools from Riemannian geometry needed to generalize gradient descent to this manifold, namely:

- The projector onto the tangent space to  $(S^2)^n$  is used to compute the Riemannian gradient.
- The projection onto  $(S^2)^n$  turns points of  $\mathbb{R}^{n \times 3}$  into points of  $(S^2)^n$ .
- ▶ The retraction turns an objective function defined on  $\mathbb{R}^{n\times 3}$  into an objective function defined on the manifold  $(S^2)^n$ .

## Projector onto the tangent space to $(S^2)^n$

Here, the points are denoted by  $\mathbf{f}_{\ell} \in \mathbb{R}^3$ ,  $\ell = 1, ..., n$ , so we write

$$\mathsf{P}_{\mathsf{T}_{\mathbf{f}_{\ell}}S^{2}} = I_{3} - \mathbf{f}_{\ell}\mathbf{f}_{\ell}^{\top}$$

It clearly changes for every vertex  $\mathbf{f}_{\ell}$ . The projector from  $\mathbb{R}^{n \times 3}$  onto the tangent space at  $\mathbf{f}$  to the power manifold  $(S^2)^n$  is a mapping

$$\mathbf{P}_{\mathbf{T}_{\mathbf{f}}\left(S^{2}\right)^{n}} \colon \mathbb{R}^{n \times 3} \to \mathbf{T}_{\mathbf{f}}\left(S^{2}\right)^{n},$$

and can be represented by a block diagonal matrix of size  $3n \times 3n$ , i.e.,

$$P_{T_{f}(S^{2})^{n}} := blkdiag(P_{T_{f_{1}}S^{2}}, P_{T_{f_{2}}S^{2}}, \dots, P_{T_{f_{n}}S^{2}}) = \begin{bmatrix} P_{T_{f_{1}}S^{2}} & & & \\ & P_{T_{f_{2}}S^{2}} & & \\ & & \ddots & \\ & & & P_{T_{f_{n}}S^{2}} \end{bmatrix}.$$

## Projection onto the power manifold $(S^2)^n$

The projection of a single vertex  $\mathbf{f}_{\ell}$  from  $\mathbb{R}^3$  to the unit sphere  $S^2$  is given by the normalization

$$\widetilde{\mathbf{f}}_{\ell} = \frac{\mathbf{f}_{\ell}}{\|\mathbf{f}_{\ell}\|_2}.$$

Hence, the projection of the whole of **f** onto the power manifold  $(S^2)^n$  is given by

$$\mathbf{P}_{\left(S^{2}\right)^{n}} \colon \mathbb{R}^{n \times 3} \to \left(S^{2}\right)^{n},$$

defined by

$$\mathbf{f} \mapsto \widetilde{\mathbf{f}} \coloneqq \operatorname{diag}\left(\frac{1}{\|\mathbf{f}_1\|_2}, \frac{1}{\|\mathbf{f}_2\|_2}, \dots, \frac{1}{\|\mathbf{f}_n\|_2}\right) \begin{bmatrix} \mathbf{f}_1 & \mathbf{f}_2 & \cdots & \mathbf{f}_n \end{bmatrix}^\top.$$

This representative matrix is only shown for illustrative purposes; in the actual implementation, we use row-wise normalization of f.

#### Retraction

► The retraction of a tangent vector  $\boldsymbol{\xi}_{\ell}$  from  $T_{\mathbf{f}_{\ell}}S^2$  to  $S^2$  is a mapping  $R_{\mathbf{f}_{\ell}}: T_{\mathbf{f}_{\ell}}S^2 \to S^2$ , defined by

$$\mathbf{R}_{\mathbf{f}_{\ell}}(\boldsymbol{\xi}_{\ell}) = \frac{\mathbf{f}_{\ell} + \boldsymbol{\xi}_{\ell}}{\|\mathbf{f}_{\ell} + \boldsymbol{\xi}_{\ell}\|}.$$



For the power manifold  $(S^2)^n$ , the retraction of all the tangent vectors  $\boldsymbol{\xi}_{\ell}$ ,  $\ell = 1, ..., n$ , is a mapping  $R_f : T_f(S^2)^n \to (S^2)^n$ , defined by  $\begin{bmatrix} \boldsymbol{\xi}_1 & \cdots & \boldsymbol{\xi}_n \end{bmatrix}^\top \mapsto \operatorname{diag} \left( \frac{1}{\|\mathbf{f}_1 + \boldsymbol{\xi}_1\|_2}, \dots, \frac{1}{\|\mathbf{f}_n + \boldsymbol{\xi}_n\|_2} \right) \begin{bmatrix} \mathbf{f}_1 + \boldsymbol{\xi}_1 & \cdots & \mathbf{f}_n + \boldsymbol{\xi}_n \end{bmatrix}^\top$ .

Constructing retractions: [Absil/Malick 2012]

#### Riemannian gradient descent method/1

► The Riemannian gradient of the objective function *E* is given by the projection onto  $T_f(S^2)^n$  of the Euclidean gradient of *E*, namely,

$$\operatorname{grad} E(f) = \operatorname{P}_{\operatorname{T}_{\mathbf{f}}\left(S^{2}\right)^{n}}(\nabla E(f)).$$

 This is always the case for embedded submanifolds; see Prop. 3.6.1 in Absil et al., 2008.



#### Riemannian gradient descent method/2

**Algorithm 1:** The RGD method on  $(S^2)^n$ .

1 Given objective function *E*, power manifold  $(S^2)^n$ , initial iterate<sup>(\*)</sup>  $\mathbf{f}^{(0)} \in (S^2)^n$ , projector  $\mathbb{P}_{\mathrm{T}_{\mathbf{f}}(S^2)^n}$  from  $\mathbb{R}^{n \times 3}$  to  $\mathbf{T}_{\mathbf{f}}(S^2)^n$ , retraction  $\mathbb{R}_{\mathbf{f}}$  from  $T_f(S^2)^n$  to  $(S^2)^n$ ; **Result:** Sequence of iterates  $\{f^{(k)}\}$ .  $k \leftarrow 0$ : <sup>3</sup> while  $f^{(k)}$  does not sufficiently minimizes E do Compute the Euclidean gradient of the objective function  $\nabla E(f^{(k)})$ ; 4 Compute the Riemannian gradient as grad  $E(f^{(k)}) = \Pr_{T_{q(k)}(S^2)^n} (\nabla E(f^{(k)}));$ 5 Choose the anti-gradient direction  $\mathbf{d}^{(k)} = -\operatorname{grad} E(f^{(k)});$ 6 Use a line-search procedure to compute a step size  $\alpha_k > 0$  that satisfies the 7 sufficient decrease condition; (k):

8 Set 
$$\mathbf{f}^{(k+1)} = \mathbf{R}_{\mathbf{f}^{(k)}}(\alpha_k \mathbf{d}^{(k)})$$
  
9  $k \leftarrow k+1;$ 

10 end while

<sup>(\*)</sup> The initial mapping  $\mathbf{f}^{(0)} \in (S^2)^n$  is computed via the fixed-point iteration (FPI) method of Yueh et al., 2019, until the first increase in energy is detected.

III. Numerical experiments

#### The benchmark triangular mesh models



#### Resulting spherical mappings



#### Convergence behavior of RGD



#### Comparison with other methods/1

Comparison with the fixed-point iteration method for minimizing the authalic energy  $E_A$  of Yueh et al., 2019.

|                  | Fixed point method [Yueh et al. 19] |                       |        | Our RGD method |                       |        |
|------------------|-------------------------------------|-----------------------|--------|----------------|-----------------------|--------|
| Model Name       | SD/Mean                             | $E_A(f)$              | Time   | SD/Mean        | $E_A(f)$              | Time   |
| Right Hand       | 0.4598                              | $2.92 \times 10^{0}$  | 1.35   | 0.1204         | $9.40 \times 10^{-2}$ | 4.07   |
| David Head       | 0.0169                              | $3.58 \times 10^{-3}$ | 4.30   | 0.0156         | $3.04 \times 10^{-3}$ | 9.16   |
| Cortical Surface | 0.0174                              | $3.21 \times 10^{-3}$ | 5.62   | 0.0200         | $3.72 \times 10^{-3}$ | 16.01  |
| Bull             | 0.1876                              | $4.59 \times 10^{-1}$ | 6.90   | 0.1348         | $2.19 \times 10^{-1}$ | 18.89  |
| Bulldog          | 0.1833                              | $3.99 \times 10^{-1}$ | 22.22  | 0.0343         | $1.27 \times 10^{-2}$ | 61.93  |
| Lion Statue      | 0.2064                              | $5.28 \times 10^{-1}$ | 23.67  | 0.1894         | $4.54 \times 10^{-1}$ | 76.76  |
| Gargoyle         | 4.1020                              | $4.85 \times 10^{2}$  | 36.10  | 0.0646         | $4.76 \times 10^{-2}$ | 80.52  |
| Max Planck       | 0.1844                              | $1.67 \times 10^1$    | 25.99  | 0.0525         | $3.39 \times 10^{-2}$ | 75.60  |
| Bunny            | 0.0394                              | $3.96 \times 10^{-2}$ | 35.78  | 0.0390         | $1.91\times10^{-2}$   | 89.62  |
| Chess King       | 1.0903                              | $1.79 \times 10^{1}$  | 88.04  | 0.0647         | $5.23 \times 10^{-2}$ | 207.47 |
| Art Statuette    | 0.0908                              | $1.07 \times 10^{-1}$ | 342.95 | 0.0405         | $2.10 \times 10^{-2}$ | 654.57 |
| Bimba Statue     | 0.0932                              | $7.42\times10^{-2}$   | 305.00 | 0.0512         | $3.29 \times 10^{-2}$ | 775.36 |

Fixed-point iteration method for minimizing the authalic energy: [Yueh et al. 2019]

#### Comparison with other methods/2

Comparison with the adaptive area-preserving parameterization for genus-zero closed surfaces proposed by Choi et al., 2022.

|                  | Choi et al., 2022 |                       |           | Our RGD method |                       |        |
|------------------|-------------------|-----------------------|-----------|----------------|-----------------------|--------|
| Model Name       | SD/Mean           | $E_A(f)$              | Time      | SD/Mean        | $E_A(f)$              | Time   |
| Right Hand       | 18.3283           | $4.84 \times 10^3$    | 218.03    | 0.1204         | $9.40\times10^{-2}$   | 4.07   |
| David Head       | 0.0426            | $2.27\times10^{-2}$   | 298.76    | 0.0156         | $3.04 \times 10^{-3}$ | 9.16   |
| Cortical Surface | 0.6320            | $1.14 \times 10^0$    | 420.20    | 0.0200         | $3.72 \times 10^{-3}$ | 16.01  |
| Bull             | 8.5565            | $1.82 \times 10^{3}$  | 34.42     | 0.1348         | $2.19 \times 10^{-1}$ | 18.89  |
| Bulldog          | 9.2379            | $1.22 \times 10^3$    | 183.94    | 0.0343         | $1.27\times10^{-2}$   | 61.93  |
| Lion Statue      | 0.2626            | $8.96 \times 10^{-1}$ | 1498.91   | 0.1894         | $4.54 \times 10^{-1}$ | 76.76  |
| Gargoyle         | 0.3558            | $1.30 \times 10^{0}$  | 1483.35   | 0.0646         | $4.76\times10^{-2}$   | 80.52  |
| Max Planck       | 11.6875           | $1.49 \times 10^3$    | 195.39    | 0.0525         | $3.39\times10^{-2}$   | 75.60  |
| Bunny            | 27.6014           | $8.94 \times 10^{3}$  | 157.87    | 0.0390         | $1.91 \times 10^{-2}$ | 89.62  |
| Chess King       | 11.8300           | $1.65 \times 10^3$    | 608.55    | 0.0647         | $5.23 \times 10^{-2}$ | 207.47 |
| Art Statuette    | 394.4414          | $9.93 \times 10^{0}$  | 2284.79   | 0.0405         | $2.10 \times 10^{-2}$ | 654.57 |
| Bimba Statue     | 0.5110            | $2.01 \times 10^0$    | 16 773.34 | 0.0512         | $3.29\times10^{-2}$   | 775.36 |

Adaptive area-preserving parameterization for genus-zero closed surfaces: [Choi/Giri/Kumar 2022]

#### Comparison with other methods/3

Comparison with the spherical optimal transportation mapping proposed by Cui et al., 2019. The executable fails to output a mapping for eight mesh models among the twelve, which are not shown in the table.

|                  | Cui et al., 2019 |                    |       | Our RGD method |                       |       |  |
|------------------|------------------|--------------------|-------|----------------|-----------------------|-------|--|
| Model Name       | SD/Mean          | $E_A(f)$           | #Its. | SD/Mean        | $E_A(f)$              | Time  |  |
| David Head       | 0.4189           | $2.25 \times 10^0$ | 27    | 0.0156         | $3.04\times10^{-3}$   | 9.16  |  |
| Cortical Surface | 0.5113           | $3.11 \times 10^0$ | 27    | 0.0200         | $3.72 \times 10^{-3}$ | 16.01 |  |
| Bulldog          | 0.8665           | $1.00 \times 10^1$ | 33    | 0.0343         | $1.27\times10^{-2}$   | 61.93 |  |
| Max Planck       | 0.5619           | $4.38 \times 10^0$ | 25    | 0.0525         | $3.39\times10^{-2}$   | 75.60 |  |

Spherical optimal transportation mapping: [Cui et al. 2019]

- A registration mapping between surfaces  $\mathcal{M}_0$  and  $\mathcal{M}_1$  is a bijective mapping  $g: \mathcal{M}_0 \to \mathcal{M}_1$ . An ideal registration mapping keeps important landmarks aligned while preserving specified geometry properties.
- Framework for the computation of landmark-aligned area-preserving parameterizations of genus-zero closed surfaces.
- Illustration with the landmark-aligned morphing process from one brain to another.

<u>Problem statement</u>: Given a set of landmark pairs  $\{(p_i, q_i) \mid p_i \in \mathcal{M}_0, q_i \in \mathcal{M}_1\}_{i=1}^m$ , our goal is to compute an area-preserving simplicial mapping  $g : \mathcal{M}_0 \to \mathcal{M}_1$  that satisfies  $g(p_i) \approx q_i$ , for i = 1, ..., m.



First, we compute area-preserving parameterizations  $f_0: \mathcal{M}_0 \to S^2$  and  $f_1: \mathcal{M}_1 \to S^2$  of surfaces  $\mathcal{M}_0$  and  $\mathcal{M}_1$ , respectively.





► The simplicial mapping  $h: S^2 \to S^2$  that satisfies  $h \circ f_0(p_i) = f_1(q_i)$ , for i = 1, ..., m, can be carried out by minimizing the registration energy

$$E_R(h) = E_S(h) + \sum_{i=1}^m \lambda_i ||h \circ f_0(p_i) - f_1(q_i)||^2.$$

Let h be the matrix representation of h. The gradient of E<sub>R</sub> with respect to h can be formulated as

$$\nabla E_R(h) = 2(I_3 \otimes L_S(h))\operatorname{vec}(\mathbf{h}) + \operatorname{vec}(\mathbf{r}),$$

where **r** is the matrix of the same size as **h** given by

$$\mathbf{r}(i,:) = \begin{cases} 2\lambda_i \left( \mathbf{h}(i,:) - (f_1(q_i))^\top \right) & \text{if } p_i \text{ is a landmark}, \\ (0,0,0) & \text{otherwise.} \end{cases}$$

• In practice, we define the midpoints  $c_i$  of each landmark pairs on  $S^2$  as

$$c_i = \frac{1}{2}(f_0(p_i) + f_1(q_i)),$$

for i = 1, ..., m, and compute  $h_0$  and  $h_1$  on  $S^2$  that satisfy  $h_0 \circ f_0(p_i) = c_i$  and  $h_1 \circ f_1(q_i) = c_i$ , respectively. The registration mapping  $g: \mathcal{M}_0 \to \mathcal{M}_1$  is obtained by the composition  $g = f_1^{-1} \circ h_1^{-1} \circ h_0 \circ f_0$ .



#### Brain morphing

- ▶ Brain morphing via the linear homotopy method.
- A landmark-aligned morphing process from M<sub>0</sub> to M<sub>1</sub> can be constructed by the linear homotopy H: M<sub>0</sub>×[0,1] → ℝ<sup>3</sup> defined as

$$H(v,t) = (1-t)v + tg(v).$$

We demonstrate the morphing process from one brain to another brain by four snapshots at four different values of *t*.



#### Conclusions

Summary:

- Combining the tools of Riemannian optimization and computational geometry, we introduced an RGD method for computing spherical area-preserving mappings of genus-zero closed surfaces.
- We conducted extensive numerical experiments on various mesh models to demonstrate the algorithm's stability and effectiveness.
- We applied our algorithm to the practical problem of landmark-aligned surface registration between two human brain models.

Outlook:

- Enhance the speed of convergence of the algorithm using appropriate Riemannian generalizations of the conjugate gradient method or the limited memory BFGS method.
- ► Target genus-one closed surfaces, e.g., the ring torus.

#### Thank you for your attention!