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Overview

Paper: Riemannian gradient descent for spherical area-preserving mappings, M.
Sutti and M.-H. Yueh, AIMS Math., Vol. 9(7), 19414–19445, 12 June 2024.

Main contributions:

(i) Combine tools from Riemannian optimization and computational geometry
to propose a Riemannian gradient descent (RGD) method for computing
spherical area-preserving mappings of topological spheres.

(ii) Numerical experiments on several mesh models demonstrate the accuracy
and efficiency of the algorithm.

(iii) Competitiveness and efficiency of our algorithm over three state-of-the-art
methods for computing area-preserving mappings.

This talk:

I. Simplicial surfaces and mappings, stretch and authalic energy.

II. Optimization on matrix manifolds, fundamental ideas and tools.

III. Numerical experiments.
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I. Simplicial surfaces and mappings, authalic and stretch
energies



Simplicial surfaces and mappings/1

▶ A simplicial surfaceM is the
underlying set of a simplicial
2-complex
K(M) = F (M)∪E(M)∪V (M)
composed of vertices

V (M) =
{
vℓ =

(
v1ℓ ,v

2
ℓ ,v

2
ℓ

)⊤
∈R3

}n
ℓ=1

,

oriented triangular faces

F (M) =
{
τℓ = [viℓ ,vjℓ ,vkℓ ] | viℓ ,vjℓ ,vkℓ ∈ V (M)

}m
ℓ=1

,

and undirected edges

E(M) =
{
[vi ,vj ] | [vi ,vj ,vk] ∈ F (M) for some vk ∈ V (M)

}
.

M

S2

f

▶ A simplicial mapping f : M→R
3 is a particular type of piecewise affine

mapping with the restriction mapping f |τ being affine, for every τ ∈ F (M).
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Simplicial surfaces and mappings/2
▶ We denote

fℓ B f (vℓ) =
(
f 1
ℓ , f

2
ℓ , f

3
ℓ

)⊤
,

for every vℓ ∈ V (M).
▶ The (image of the) mapping f can

be represented as a matrix

f =


f⊤1...
f⊤n

 =

f 1
1 f 2

1 f 3
1...

...
...

f 1
n f 2

n f 3
n

C [
f1 f2 f3

]
,

or a vector

vec(f) =

f
1

f2

f3

 .

M

S2

f

▶ A simplicial mapping f : M→R
3 is said to be area-preserving if |f (τ)| = |τ |

for every τ ∈ F (M).
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Authalic energy
The authalic (or equiareal) energy for simplicial mappings f : M→R

3 is

EA(f ) = ES (f )−A(f ),

where A(f ) is the image area, ES is the stretch energy defined as

ES (f ) =
1
2
vec(f)⊤(I3 ⊗LS (f ))vec(f),

where LS (f ) is the weighted Laplacian matrix LS (f ), defined by

[LS (f )]i,j =


−
∑

[vi ,vj ,vk ]∈F (M)[ωS (f )]i,j,k if [vi ,vj ] ∈ E(M),
−
∑

ℓ,i[LS (f )]i,ℓ if j = i,
0 otherwise,

in which ωS (f ) is the modified
cotangent weight defined as

[ωS (f )]i,j,k =
cot(θk

i,j (f )) |f ([vi ,vj ,vk])|
2|[vi ,vj ,vk]|

.
θk
i,j (f ) θℓ

j,i(f )

fi

fj

fℓfk
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Stretch energy/1

▶ The stretch energy can be reformulated as [see Lemma 3.1, Yueh 2023]

ES (f ) =
∑

τ∈F (M)

|f (τ)|2

|τ |
.

▶ (If the area-preserving simplicial mapping exists) then every minimizer of
ES (f ) is an area-preserving mapping and vice-versa [Theorem 3.3,
Yueh 2023], i.e.,

f = argmin
|g(M)|=|M|

ES (g)

if and only if |f (τ)| = |τ | for every τ ∈ F (M).

▶ It is also proved that EA(f ) ⩾ 0 and the equality holds if and only if f is
area-preserving [Corollary 3.4, Yueh 2023].

Theoretical foundation of the stretch energy minimization for area-preserving
simplicial mappings: [Yueh 2023]
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Stretch energy/2

▶ Due to the optimization process, A(f ) varies, hence we introduce a prefactor
|M|/A(f ) and define the normalized stretch energy as

E(f ) =
|M|
A(f )

ES (f ).

▶ To perform numerical optimization we need to compute the Euclidean
gradient of E(f ). By applying the formula ∇ES (f ) = 2(I3 ⊗LS (f ))vec(f)
from [Yueh 2023], the gradient of E(f ) can be formulated as

∇E(f ) = ∇
(
|M|
A(f )

ES (f )
)

=
|M|
A(f )

∇ES (f ) +ES (f )∇
|M|
A(f )

=
2|M|
A(f )

(I3 ⊗LS (f ))vec(f)−
|M|ES (f )
A(f )2

∇A(f ).
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II. Riemannian optimization framework and geometry



Riemannian optimization/1

▶ The Riemannian optimization
framework solves constrained
optimization problems where the
constraints have a geometric
nature.
▶ Exploit the underlying geometric

structure of the problems. The
optimization variables are
constrained to a smooth manifold.

▶ In our setting: The problem is formulated on a power manifold of n unit
spheres embedded in R

3, and we use the RGD method for minimizing the
cost function on this power manifold.

▶ Traditional optimization methods rely on the Euclidean space structure.
▶ For instance, the steepest descent method for minimizing g : Rn→R updates

xk by moving in the direction dk of the anti-gradient of g , by a step size αk
chosen according to an appropriate line-search rule.

Manifold optimization: [Edelman et al. 1998, Absil et al. 2008, Boumal 2023], . . .
The image above has been taken from the Manopt website: https://www.manopt.org/
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https://press.princeton.edu/absil
https://www.cambridge.org/core/books/an-introduction-to-optimization-on-smooth-manifolds/EAF2B35457B7034AC747188DC2FFC058
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Riemannian optimization/2

▶ A line-search method in the
Riemannian framework determines
at xk on a manifoldM a search
direction ξ on TxM .

▶ xk+1 is then determined by a line
search along a curve α 7→ Rx(αξ)
where Rx : TxM→M is the
retraction mapping.

▶ Repeat for xk+1 taking the role of
xk .

Rfℓ(ξℓ)

TfℓS
2

S2

ξℓ
fℓ

▶ Search directions can be the negative of the Riemannian gradient, leading to
the Riemannian gradient descent method (RGD).
▶ Other choices of search directions{ other methods, e.g., Riemannian

trust-region method or Riemannian BFGS.

Riemannian trust-region method: [Absil/Baker/Gallivan 2007], Riemannian BFGS:
[Ring/Wirth 2012]
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Geometry of the unit sphere S2

The unit sphere S2 is a Riemannian submanifold of R3 defined as

S2 = {x ∈R3 : x⊤x = 1}.

The Riemannian metric on the unit sphere is inherited from R
3, i.e.,

⟨ξ,η⟩x = ξ⊤η, ξ, η ∈ TxS
2,

where TxS
2 is the tangent space to S2

at x ∈ S2, defined as the set of all
vectors orthogonal to x in R

3, i.e.,

TxS
2 = {z ∈R3 : x⊤z = 0}.

The projector PTxS2 : R3→ TxS
2 is

defined by

PTxS2(z) = (I3 − xx⊤)z.

Rfℓ(ξℓ)

TfℓS
2

S2

ξℓ
fℓ

In the following, points on the unit sphere are denoted by fℓ (the vertices of the
simplicial mapping f ), and tangent vectors are represented by ξℓ .
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Geometry of the power manifold
(
S2

)n
We aim to minimize the function E(f ) = E(f1, . . . ,fn), where each fℓ , ℓ = 1, . . . ,n,
lives on the same manifold S2.

{ This leads us to consider the power manifold of n unit spheres(
S2

)n
= S2 × S2 × · · ·S2︸            ︷︷            ︸

n times

,

with the metric of S2 extended elementwise.

In the next slides, we present the tools from Riemannian geometry needed to
generalize gradient descent to this manifold, namely:

▶ The projector onto the tangent space to
(
S2

)n
is used to compute the

Riemannian gradient.

▶ The projection onto
(
S2

)n
turns points of Rn×3 into points of

(
S2

)n
.

▶ The retraction turns an objective function defined on R
n×3 into an objective

function defined on the manifold
(
S2

)n
.
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Projector onto the tangent space to
(
S2

)n
Here, the points are denoted by fℓ ∈R3, ℓ = 1, . . . ,n, so we write

PTfℓS
2 = I3 − fℓf⊤ℓ .

It clearly changes for every vertex fℓ . The projector from R
n×3 onto the tangent

space at f to the power manifold
(
S2

)n
is a mapping

P
Tf

(
S2

)n : Rn×3→ Tf

(
S2

)n
,

and can be represented by a block diagonal matrix of size 3n× 3n, i.e.,

P
Tf

(
S2

)n B blkdiag
(
PTf1S

2 ,PTf2S
2 , . . . ,PTfnS

2

)
=


PTf1S

2

PTf2S
2

...
PTfnS

2

 .
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Projection onto the power manifold
(
S2

)n
The projection of a single vertex fℓ from R

3 to the unit sphere S2 is given by the
normalization

f̃ℓ =
fℓ
∥fℓ∥2

.

Hence, the projection of the whole of f onto the power manifold
(
S2

)n
is given

by
P(

S2
)n : Rn×3→

(
S2

)n
,

defined by

f 7→ f̃B diag
(

1
∥f1∥2

,
1
∥f2∥2

, . . . ,
1
∥fn∥2

)[
f1 f2 · · · fn

]⊤
.

This representative matrix is only shown for illustrative purposes; in the actual
implementation, we use row-wise normalization of f.

15 / 31



Retraction

▶ The retraction of a tangent vector
ξℓ from TfℓS

2 to S2 is a mapping
Rfℓ : TfℓS

2→ S2, defined by

Rfℓ (ξℓ) =
fℓ + ξℓ
∥fℓ + ξℓ∥

.

Rfℓ(ξℓ)

TfℓS
2

S2

ξℓ
fℓ

▶ For the power manifold
(
S2

)n
, the retraction of all the tangent vectors ξℓ ,

ℓ = 1, . . . ,n, is a mapping Rf : Tf

(
S2

)n
→

(
S2

)n
, defined by

[
ξ1 · · · ξn

]⊤
7→ diag

(
1

∥f1 + ξ1∥2
, . . . ,

1
∥fn + ξn∥2

)[
f1 + ξ1 · · · fn + ξn

]⊤
.

Constructing retractions: [Absil/Malick 2012]
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Riemannian gradient descent method/1

▶ The Riemannian gradient of the
objective function E is given by
the projection onto Tf

(
S2

)n
of the

Euclidean gradient of E, namely,

gradE(f ) = P
Tf

(
S2

)n(∇E(f )).
▶ This is always the case for

embedded submanifolds; see Prop.
3.6.1 in Absil et al., 2008.

TfℓS
2

S2

∇E

gradEfℓ
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Riemannian gradient descent method/2

Algorithm 1: The RGD method on
(
S2

)n
.

1 Given objective function E, power manifold
(
S2

)n
, initial iterate(∗)

f(0) ∈
(
S2

)n
, projector P

Tf

(
S2

)n from R
n×3 to Tf

(
S2

)n
, retraction Rf from

Tf

(
S2

)n
to

(
S2

)n
;

Result: Sequence of iterates {f (k)}.
2 k← 0;
3 while f (k) does not sufficiently minimizes E do
4 Compute the Euclidean gradient of the objective function ∇E(f (k));
5 Compute the Riemannian gradient as gradE(f (k)) = P

T
f(k)

(
S2

)n(∇E(f (k))
)
;

6 Choose the anti-gradient direction d(k) = −gradE(f (k));
7 Use a line-search procedure to compute a step size αk > 0 that satisfies the

sufficient decrease condition;
8 Set f(k+1) = Rf(k)(αkd(k));
9 k← k +1;

10 end while

(∗) The initial mapping f(0) ∈
(
S2

)n
is computed via the fixed-point iteration (FPI) method of Yueh et

al., 2019, until the first increase in energy is detected.
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III. Numerical experiments



The benchmark triangular mesh models
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Resulting spherical mappings
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Convergence behavior of RGD
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Comparison with other methods/1

Comparison with the fixed-point iteration method for minimizing the authalic
energy EA of Yueh et al., 2019.

Fixed point method [Yueh et al. 19] Our RGD method

Model Name SD/Mean EA(f ) Time SD/Mean EA(f ) Time

Right Hand 0.4598 2.92× 100 1.35 0.1204 9.40× 10−2 4.07
David Head 0.0169 3.58× 10−3 4.30 0.0156 3.04× 10−3 9.16

Cortical Surface 0.0174 3.21× 10−3 5.62 0.0200 3.72× 10−3 16.01
Bull 0.1876 4.59× 10−1 6.90 0.1348 2.19× 10−1 18.89

Bulldog 0.1833 3.99× 10−1 22.22 0.0343 1.27× 10−2 61.93
Lion Statue 0.2064 5.28× 10−1 23.67 0.1894 4.54× 10−1 76.76
Gargoyle 4.1020 4.85× 102 36.10 0.0646 4.76× 10−2 80.52

Max Planck 0.1844 1.67× 101 25.99 0.0525 3.39× 10−2 75.60
Bunny 0.0394 3.96× 10−2 35.78 0.0390 1.91× 10−2 89.62

Chess King 1.0903 1.79× 101 88.04 0.0647 5.23× 10−2 207.47
Art Statuette 0.0908 1.07× 10−1 342.95 0.0405 2.10× 10−2 654.57
Bimba Statue 0.0932 7.42× 10−2 305.00 0.0512 3.29× 10−2 775.36

Fixed-point iteration method for minimizing the authalic energy: [Yueh et al. 2019]
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Comparison with other methods/2
Comparison with the adaptive area-preserving parameterization for genus-zero
closed surfaces proposed by Choi et al., 2022.

Choi et al., 2022 Our RGD method

Model Name SD/Mean EA(f ) Time SD/Mean EA(f ) Time

Right Hand 18.3283 4.84× 103 218.03 0.1204 9.40× 10−2 4.07
David Head 0.0426 2.27× 10−2 298.76 0.0156 3.04× 10−3 9.16

Cortical Surface 0.6320 1.14× 100 420.20 0.0200 3.72× 10−3 16.01
Bull 8.5565 1.82× 103 34.42 0.1348 2.19× 10−1 18.89

Bulldog 9.2379 1.22× 103 183.94 0.0343 1.27× 10−2 61.93
Lion Statue 0.2626 8.96× 10−1 1498.91 0.1894 4.54× 10−1 76.76
Gargoyle 0.3558 1.30× 100 1483.35 0.0646 4.76× 10−2 80.52

Max Planck 11.6875 1.49× 103 195.39 0.0525 3.39× 10−2 75.60
Bunny 27.6014 8.94× 103 157.87 0.0390 1.91× 10−2 89.62

Chess King 11.8300 1.65× 103 608.55 0.0647 5.23× 10−2 207.47
Art Statuette 394.4414 9.93× 100 2284.79 0.0405 2.10× 10−2 654.57
Bimba Statue 0.5110 2.01× 100 16 773.34 0.0512 3.29× 10−2 775.36

Adaptive area-preserving parameterization for genus-zero closed surfaces:
[Choi/Giri/Kumar 2022]
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Comparison with other methods/3

Comparison with the spherical optimal transportation mapping proposed by Cui
et al., 2019. The executable fails to output a mapping for eight mesh models
among the twelve, which are not shown in the table.

Cui et al., 2019 Our RGD method

Model Name SD/Mean EA(f ) #Its. SD/Mean EA(f ) Time

David Head 0.4189 2.25× 100 27 0.0156 3.04× 10−3 9.16
Cortical Surface 0.5113 3.11× 100 27 0.0200 3.72× 10−3 16.01

Bulldog 0.8665 1.00× 101 33 0.0343 1.27× 10−2 61.93
Max Planck 0.5619 4.38× 100 25 0.0525 3.39× 10−2 75.60

Spherical optimal transportation mapping: [Cui et al. 2019]
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Surface registration/1

▶ A registration mapping between surfacesM0 andM1 is a bijective mapping
g : M0→M1. An ideal registration mapping keeps important landmarks
aligned while preserving specified geometry properties.

▶ Framework for the computation of landmark-aligned area-preserving
parameterizations of genus-zero closed surfaces.

▶ Illustration with the landmark-aligned morphing process from one brain to
another.

Problem statement: Given a set of landmark pairs {(pi ,qi) | pi ∈M0, qi ∈M1}mi=1,
our goal is to compute an area-preserving simplicial mapping g : M0→M1 that
satisfies g(pi) ≈ qi , for i = 1, . . . ,m.

M0 M1

g
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Surface registration/2

▶ First, we compute area-preserving parameterizations f0 : M0→ S2 and
f1 : M1→ S2 of surfacesM0 andM1, respectively.
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Surface registration/3

▶ The simplicial mapping h : S2→ S2 that satisfies h ◦ f0(pi) = f1(qi), for
i = 1, . . . ,m, can be carried out by minimizing the registration energy

ER(h) = ES (h) +
m∑
i=1

λi∥h ◦ f0(pi)− f1(qi)∥2.

▶ Let h be the matrix representation of h. The gradient of ER with respect to h
can be formulated as

∇ER(h) = 2(I3 ⊗LS (h))vec(h) + vec(r),

where r is the matrix of the same size as h given by

r(i, :) =

2λi (h(i, :)− (f1(qi))⊤) if pi is a landmark,
(0,0,0) otherwise.
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Surface registration/4
▶ In practice, we define the midpoints ci of each landmark pairs on S2 as

ci =
1
2
(f0(pi) + f1(qi)),

for i = 1, . . . ,m, and compute h0 and h1 on S2 that satisfy h0 ◦ f0(pi) = ci and
h1 ◦ f1(qi) = ci , respectively. The registration mapping g : M0→M1 is
obtained by the composition g = f −11 ◦ h

−1
1 ◦ h0 ◦ f0.
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Brain morphing

▶ Brain morphing via the linear homotopy method.

▶ A landmark-aligned morphing process fromM0 toM1 can be constructed
by the linear homotopy H : M0 × [0,1]→R

3 defined as

H(v, t) = (1− t)v + t g(v).

▶ We demonstrate the morphing process from one brain to another brain by
four snapshots at four different values of t.

(a) t = 0 (b) t = 0.5 (c) t = 2 (f) t = 15
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Conclusions

Summary:

▶ Combining the tools of Riemannian optimization and computational
geometry, we introduced an RGD method for computing spherical
area-preserving mappings of genus-zero closed surfaces.

▶ We conducted extensive numerical experiments on various mesh models to
demonstrate the algorithm’s stability and effectiveness.

▶ We applied our algorithm to the practical problem of landmark-aligned
surface registration between two human brain models.

Outlook:

▶ Enhance the speed of convergence of the algorithm using appropriate
Riemannian generalizations of the conjugate gradient method or the limited
memory BFGS method.

▶ Target genus-one closed surfaces, e.g., the ring torus.

Thank you for your attention!
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