
Optimization on matrix manifolds
and applications

Marco Sutti
Postdoctoral fellow at NCTS

國家理論科學研究中心數學組、博士後

NCU Mathematics Colloquium

December 12, 2024

Overview

▶ Numerical algorithms for optimization
onmatrix manifolds.

▶ Exploit geometric structure, take into
account the constraints.

▶ Framework that encompasses almost
all of my research works.

TxkM

M

tkηk
xk

xk+1 = Rxk (tkηk)

This talk:

I. Numerical (Riemannian) optimization on matrix manifolds,
fundamental ideas and tools.

II. Applications on:
▶ the manifold of fixed-rank matrices (low-rank time integration of a PDE);

▶ the power manifold of unit spheres (computer graphics);

▶ the Stiefel manifold (interpolation on manifolds).

2 / 50

I. Optimization on matrix manifolds

Riemannian optimization/1
▶ The Riemannian optimization

framework solves constrained
optimization problems where the
constraints have a geometric
nature.
▶ Exploit the underlying geometric

structure of the problems. The
optimization variables are
constrained to a smooth manifold.

▶ Traditional optimization methods
rely on the Euclidean vector space
structure.
▶ E.g., the steepest descent method

for minimizing f : Rn→R

updates xk by moving in the
direction dk of the anti-gradient of
f , by a step size αk chosen
according to a line-search rule.

Manifold optimization: [Edelman et al. 1998, Absil et al. 2008, Boumal 2023], . . .
The image above has been taken from the Manopt website: https://www.manopt.org/

4 / 50

https://epubs.siam.org/doi/10.1137/S0895479895290954
https://press.princeton.edu/absil
https://www.cambridge.org/core/books/an-introduction-to-optimization-on-smooth-manifolds/EAF2B35457B7034AC747188DC2FFC058
https://www.manopt.org/

Riemannian optimization/2

▶ Formally, we can state the optimization
problem as

min
x∈M

f (x),

where f : M→R is the objective function
andM is some matrix manifold.

▶ Matrix manifold: any manifold that is constructed from R
n×p by taking

either embedded submanifolds or quotient manifolds.

▶ Examples of embedded submanifolds: unit sphere, orthogonal Stiefel manifold,
manifold of fixed-rank matrices, . . .

▶ Examples of quotient manifolds: the Grassmann manifold, the flag manifold.

▶ A manifoldM endowed with a smoothly-varying inner product (called
Riemannian metric g) is called Riemannian manifold.

{ A couple (M, g), i.e., a manifold with a Riemannian metric on it.

Manifold optimization: [Edelman et al. 1998, Absil et al. 2008, Boumal 2023], . . .
5 / 50

https://epubs.siam.org/doi/10.1137/S0895479895290954
https://press.princeton.edu/absil
https://www.cambridge.org/core/books/an-introduction-to-optimization-on-smooth-manifolds/EAF2B35457B7034AC747188DC2FFC058

Riemannian optimization/3

▶ A line-search method in the
Riemannian framework determines
at xk on a manifoldM a search
direction ξk on TxkM→M.

▶ xk+1 is then determined by a line
search along a curve α 7→ Rxk (αξk)
where Rxk : TxkM→M is the
retraction mapping.

▶ Repeat for xk+1 in the role of xk .

Rxk
(ξk)

Txk
S2

S2

ξk
xk

▶ Search directions can be the negative of the Riemannian gradient, leading to
the Riemannian gradient descent method (RGD).
▶ Other choices of search directions{ other methods, e.g., Riemannian

trust-region method or Riemannian BFGS.

Riemannian trust-region method: [Absil/Baker/Gallivan 2007], Riemannian BFGS:
[Ring/Wirth 2012]

6 / 50

https://link.springer.com/article/10.1007/s10208-005-0179-9
https://epubs.siam.org/doi/10.1137/11082885X

The manifold of fixed-rank matricesMr

▶ Later, we will define an optimization problem over

Mr = {X ∈Rm×n : rank(X) = r}.

{Mr has a smooth structure . . .

2× 2 example:

X =
[
x −2y
y z

]
.

Parametrization:
rank(X) = 1⇔ xz = −2y2 and
x,z , 0.

▶ Using the SVD, one has the equivalent characterization

Mr = {UΣV ⊤ : U ∈ St(m,r), V ∈ St(n,r),
Σ = diag(σ1,σ2, . . . ,σr) ∈Rr×r , σ1 ≥ · · · ≥ σr > 0}.

Optimizing on submanifoldMr : [Vandereycken 2013]
7 / 50

https://epubs.siam.org/doi/10.1137/110845768

The unit sphere S2 and the power manifold
(
S2

)n

The unit sphere S2 is a Riemannian submanifold of R3 defined as

S2 = {x ∈R3 : x⊤x = 1}.
The Riemannian metric on the unit sphere is inherited from R

3, i.e.,

⟨ξ,η⟩x = ξ⊤η, ξ, η ∈ TxS
2,

where TxS
2 is the tangent space to S2 at

x ∈ S2, defined as the set of all vectors
orthogonal to x in R

3, i.e.,

TxS
2 = {z ∈R3 : x⊤z = 0}.

The projector PTxS2 : R3→ TxS
2

PTxS2(z) = (I3 − xx⊤)z.

Rxk
(ξk)

Txk
S2

S2

ξk
xk

{ Later, we will consider the power manifold of n unit spheres(
S2

)n
= S2 × S2 × · · ·S2

︸ ︷︷ ︸
n times

, with the metric of S2 extended elementwise.

8 / 50

The Stiefel manifold St(n,p)

▶ Set of matrices with orthonormal
columns:

St(n,p) = {X ∈Rn×p : X⊤X = Ip}.

TXSt(n,p)

St(n,p)

Z

X

▶ Tangent space toM at x: set of all tangent vectors toM at x, denoted TxM.
For St(n,p),

TXSt(n,p) = {ξ ∈Rn×p : X⊤ξ + ξ⊤X = 0}.

▶ Alternative characterization of TXSt(n,p):

TXSt(n,p) = {XΩ +X⊥K : Ω = −Ω⊤, K ∈R(n−p)×p},

where span(X⊥) =
(
span(X)

)⊥
.

▶ The projection onto the tangent space TXSt(n,p) is

PX ξ = Xskew(X⊤ξ) + (I −XX⊤)ξ.

Stiefel manifold: [Stiefel, 1935]
9 / 50

Riemannian gradient

Let f : M→R. E.g., the objective function in an optimization problem.

{ For any embedded submanifold
(Prop. 3.6.1 in Absil et al., 2008):

▶ Riemannian gradient: projection
onto TXM of the Euclidean
gradient

gradf (X) = PTXM(∇f (X)).

TXM

M

X

∇f (X)

gradf (X)

{ Recall: orthogonal projection onto the tangent space to

the unit sphere:

PTxS2(z) = (I − xx⊤)z.
the Stiefel manifold:

PX ξ = Xskew(X⊤ξ) + (I −XX⊤)ξ.

{ ∇f (X) is the Euclidean gradient of f (X).

Matrix and vector calculus: The Matrix Cookbook, www.matrixcalculus.org, . . .
Automatic differentiation on low-rank manifolds: [Novikov/Rakhuba/Oseledets 2022]

10 / 50

https://press.princeton.edu/absil
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.matrixcalculus.org
https://epubs.siam.org/doi/10.1137/20M1356774

Steepest descent on a manifold
▶ Steepest descent in R

n is based on the update
formula

xk+1 = xk + tkηk ,

where tk ∈R is the step size and ηk ∈Rn is
the search direction.

{ On nonlinear manifolds:

▶ ηk will be a tangent vector toM at xk , i.e., ηk ∈ TxkM.

Remark: If ηk = −gradf (xk), we get the Riemannian steepest descent.

▶ Search along a curve inM whose tangent vector at tk = 0 is ηk .

{ Retraction.
TxkM

M

tkηk
xk

xk+1 = Rxk (tkηk)

11 / 50

Retractions

▶ Move in the direction of ξ while remaining constrained toM.

▶ Smooth mapping Rx : TxM→M with a local condition that preserves
gradients at x.

TxM

M

ξ

x

Rx(ξ)

▶ The Riemannian exponential mapping is also a retraction, but it is not
computationally efficient.

▶ Retractions: first-order approximation of the Riemannian exponential!

Constructing retractions: [Absil/Malick 2012]
12 / 50

https://epubs.siam.org/doi/10.1137/100802529

Steepest descent on a manifold (reprise)

Steepest descent on manifolds is based on the update formula

xk+1 = Rxk (tkηk),

where tk ∈R and ηk ∈ TxkM.

Recipe for constructing the steepest descent method on a manifold:

▶ Choose a retraction R (previous slide).

▶ Select a search direction ηk (the anti-gradient ηk = −gradf (xk)).
▶ Select a step length tk (with a line-search technique).

TxkM

M

tkηk
xk

xk+1 = Rxk (tkηk)

13 / 50

II. Research works and applications

Implicit low-rank Riemannian schemes

Paper: Implicit low-rank Riemannian schemes for the time integration of stiff
partial differential equations, M. Sutti and B. Vandereycken, Vol. 101, article
number 3, J. Sci. Comput., 13 August 2024.

Main contributions:

▶ Preconditioner for the Riemannian trust-region (RTR) method on the
manifold of fixed-rank matrices.

▶ Applications within implicit numerical integration schemes to solve stiff,
time-dependent PDEs.

This part of the talk:

I. Motivation for considering the low-rank format.

II. Riemannian trust-region method and preconditioning.

III. The Allen–Cahn equation.

15 / 50

https://doi.org/10.1007/s10915-024-02629-8
https://doi.org/10.1007/s10915-024-02629-8

Motivation for the low-rank format

▶ Often, like in computational fluid dynamics (CFD), we need to discretize a
problem to represent the continuous solution.

▶ For high-dimensional problems (e.g., Schrödinger equation, Black–Scholes
equation. . .), a “naive” discretization with n degrees of freedom in each
dimension leads to nd coefficients.

▶ For example, if d = 15, and n = 100 grid points in each dimension, we would
need 8000 TB of memory to store all coefficients in double precision:

10015 × 64 bits
8× 1012 = 8× 1018 = 8000 TB.

NB: 64 is the number of bits necessary to represent a number in double precision arithmetic.
1 TB = 240 bytes ≈ 1012 bytes (1 TB is one trillion bytes).

▶ Since the number of coefficients scales exponentially by d but the accuracy is
typically determined by n, this poses a limitation on the size of the problems
{ Curse of dimensionality.

16 / 50

Matrix factorization

▶ One of the possible workarounds{ use matrix factorization!
{ the singular value decomposition (SVD):

X =UΣV ⊤ : U⊤U = Ir , V
⊤V = Ir , Σ = diag(σi), σ1 ⩾ · · · ⩾ σr > 0.

Σ

U

V
T

r n

X

n

n = n

r

r r

▶ Only 2nr + r coefficients instead of n2. If r ≪ n, then big memory savings.

▶ Perform the calculations directly in the factorized format.

17 / 50

Riemannian trust-region (RTR) method
Algorithm 1: Riemannian trust-region (RTR)

1 Given ∆̄ > 0, ∆1 ∈ (0, ∆̄)
2 for i = 1,2, . . . do
3 Define the second-order model

mi : TxiM→R, ξ 7→ f (xi)+
〈
gradf (xi),ξ

〉
+
1
2
〈
Hessf (xi)[ξ],ξ

〉
.

4 Trust-region subproblem: compute ηi by solving

ηi = argminmi(ξ) s.t. ∥ξ∥ ≤ ∆i .

5 Compute ρi = (f̂ (0)− f̂i(ηi))/(mi(0)−mi(ηi)).
6 if ρi ≥ 0.05 then
7 Accept step and set xi+1 = Rxi (ηi).
8 else
9 Reject step and set xi+1 = xi .

10 end if
11 Radius update: set

∆i+1 =

min(2∆i , ∆̄) if ρi ≥ 0.75 and ∥ηi∥ = ∆i ,

0.25∥ηi∥ if ρi ≤ 0.25,
∆i otherwise.

12 end for

TxM

M

ξ

x

Rx(ξ)

TR method: [Goldfeld/Quandt/Trotter 1966, Sorensen 1982, Fletcher 1980/1987 . . .]
RTR method: [Absil/Baker/Gallivan 2007]

18 / 50

https://www.jstor.org/stable/1909768
https://digital.library.unt.edu/ark:/67531/metadc283479/
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118723203
https://link.springer.com/article/10.1007/s10208-005-0179-9

Riemannian Hessian and preconditioning

▶ In the case of Riemannian submanifolds, the full Riemannian Hessian of f at
x ∈M is given by the projected Euclidean Hessian plus the curvature part

Hessf (x)[ξ] = Px∇2f (x)Px + Px (“curvature terms”)Px.

{ Use Px∇2f (x)Px to develop a preconditioner for the trust-region
subproblem in the RTR method. This is a symmetric n2-by-n2 matrix.

▶ Inverse of Px∇2f (x)Px{ good candidate for a preconditioner.

▲! Not inverted directly, since this would cost O(n6).
▶ A good preconditioner should reduce the number of iterations of the inner

trust-region solver. It has to be effective and cheap to compute.

{Many (tedious) calculations, but the numerical results are quite striking!

Symmetric positive semidefinite matrices with fixed rank: [Vandereycken/Vandewalle 2010]
19 / 50

https://epubs.siam.org/doi/10.1137/090764566

The Allen–Cahn equation/1

▶ Reaction-diffusion equation that models the process of phase separation in
multi-component alloy systems.
▶ Other applications include mean curvature flows, two-phase incompressible

fluids, complex dynamics of dendritic growth, and image segmentation.

▶ In its simplest form, it reads

∂w
∂t

= ε∆w+w −w3,

where w ≡ w(x, t), x ∈Ω = [−π,π]2, and t ≥ 0.

▶ It is a stiff PDE with a low-order polynomial nonlinearity and a diffusion
term ε∆w.

Allen–Cahn equation: [Allen/Cahn 1972, Allen/Cahn 1973]
20 / 50

https://www.sciencedirect.com/science/article/pii/0001616072900375
https://www.sciencedirect.com/science/article/pii/0036974873900732

The Allen–Cahn equation/2 - “naive” discretization
▶ Spatial discretization on a uniform grid, 256× 256 grid points.

▶ Storage of each matrix: 2562 × 8/220 ≈ 0.5 MB.

▶ The Laplacian ∆w is discretized using central finite differences with periodic
boundary conditions.

▶ Numerical time integration with a fourth-order Runge–Kutta method (ERK4),
h = 10−4, because of the condition for an explicit scheme to be stable (very
similar to the CFL condition). Very small time step!

(a) t = 0 (b) t = 0.5 (c) t = 2 (f) t = 15

Figure: Time evolution of the solution w to the Allen–Cahn equation, with ERK4, h = 10−4.

MATLAB code available at https://github.com/MarcoSutti/PrecRTR
21 / 50

https://github.com/MarcoSutti/PrecRTR

The Allen–Cahn equation/3 - rank assessment
▶ Question: is it low rank? Preliminary study on the dense-format solution.

Figure: Time evolution of the rank of the numerical solutionWref to the Allen–Cahn
equation, with ERK4, h = 10−4.

22 / 50

Implicit numerical integration scheme & low-rank format

▶ The reference solution in the previous slides is computed with an explicit
fourth-order Runge–Kutta method (ERK4), h = 10−4. Very small!

{ Time to perform the entire simulation until t = 15: ≈ 36.5 minutes!

▶ We could use an implicit numerical integration scheme for the time
integration.

+ It allows for a larger time step than its explicit counterpart.

− Typically requires the solution of nonlinear equations, which is very
expensive.

{ Idea: Using the low-rank format and the preconditioner to reduce the
computational cost together with an implicit numerical time integration scheme
that avoids the restriction on the time step due to the stability condition!

23 / 50

The Allen–Cahn equation/4 - low-rank evolution/I

▶ We build the objective functional

F (w)B
∫

Ω

εh
2
∥∇w∥2 + (1− h)

2
w2 +

h
4
w4 − w̃ ·wdxdy.

▶ Discretization of the objective functional in factorized matrix form is

F = h2x

εh
2

(
∥(LU)Σ∥2F + ∥(LV)Σ∥2F

)
+
1− h
2
∥Σ∥2F +

h
4

∑

i,j

w4
ij −Tr

(
(G̃⊤G)(V⊤Ṽ)

)

 .

▶ RTR is applied to the (discretized)
optimization problem

min
W∈Mr

F(W).

▶ Factorized form of the Euclidean
gradient G =UGΣGV

⊤
G .

AU

U Uγ

][

Vγ

V AV

T

24 / 50

The Allen–Cahn equation/5 - low-rank evolution/II
▶ We can take very big time steps, and still, the numerical solution at the final

time has an acceptable error with respect to the reference solution.
▶ Time to perform the simulation until t = 15, with h = 0.05: ≈ 5 minutes.

▶ Time to perform the simulation until t = 15, with h = 1.00: ≈ 12.5 seconds.

{ Compare with the ≈ 36.5 minutes for the dense format!

(a) (b)

Figure: Panel (a): error versus time for the low-rank evolution of the Allen–Cahn equation.
Panel (b): error at T = 15 versus time step h. 25 / 50

Implicit low-rank Riemannian schemes - summary

Take-home message: Using a low-rank format allows us to reduce the
computational cost and use an implicit numerical time integration scheme that
avoids the time step restriction of the stability condition!

Main contributions:

▶ Efficient preconditioner for the trust-region subproblem on the manifold of
fixed-rank matrices.

▶ Implicit low-rank Riemannian schemes for the time integration of stiff PDEs.

Outlook:

▶ Use higher-order numerical integration methods.

▶ Target other applications, e.g., diffusion problems in mathematical biology or
problems with low-rank tensor structure.

26 / 50

RGD for spherical area-preserving mappings

Paper: Riemannian gradient descent for spherical area-preserving mappings, M.
Sutti and M.-H. Yueh, AIMS Math., Vol. 9(7), 19414–19445, 12 June 2024.

Main contributions:

(i) Combine tools from Riemannian optimization and computational geometry
to propose a Riemannian gradient descent (RGD) method for computing
spherical area-preserving mappings of topological spheres.

(ii) Numerical experiments on several mesh models demonstrate the accuracy
and efficiency of the algorithm.

(iii) Competitiveness and efficiency of our algorithm over three state-of-the-art
methods for computing area-preserving mappings.

This part of the talk:

I. Simplicial surfaces and mappings, authalic and stretch energies.

II. Geometry of the power manifold of unit spheres and RGD.

III. Numerical experiments.
27 / 50

https://www.aimspress.com/article/doi/10.3934/math.2024946

Simplicial surfaces and mappings/1

▶ A simplicial surfaceM is the
underlying set of a simplicial
2-complex
K(M) = F (M)∪E(M)∪V (M)
composed of vertices

V (M) =
{
vℓ =

(
v1ℓ ,v

2
ℓ ,v

2
ℓ

)⊤ ∈R3
}n
ℓ=1

,

oriented triangular faces

F (M) =
{
τℓ = [viℓ ,vjℓ ,vkℓ] | viℓ ,vjℓ ,vkℓ ∈ V (M)

}m
ℓ=1

,

and undirected edges

E(M) =
{
[vi ,vj] | [vi ,vj ,vk] ∈ F (M) for some vk ∈ V (M)

}
.

M

S2

f

▶ A simplicial mapping f : M→R
3 is a particular type of piecewise affine

mapping with the restriction mapping f |τ being affine, for every τ ∈ F (M).

28 / 50

Simplicial surfaces and mappings/2
▶ We denote

fℓ B f (vℓ) =
(
f 1
ℓ , f

2
ℓ , f

3
ℓ

)⊤
,

for every vℓ ∈ V (M).
▶ The (image of the) mapping f can

be represented as a matrix

f =

f⊤1...
f⊤n

 =

f 1
1 f 2

1 f 3
1...

...
...

f 1
n f 2

n f 3
n

C

[
f1 f2 f3

]
,

or a vector

vec(f) =

f1

f2

f3

 .

M

S2

f

▶ A simplicial mapping f : M→R
3 is said to be area-preserving if |f (τ)| = |τ |

for every τ ∈ F (M).
29 / 50

Authalic and stretch energies

▶ The authalic (or equiareal) energy for simplicial mappings f : M→R
3 is

EA(f) = ES (f)−A(f),
where A(f) is the image area, and ES is the stretch energy defined as [see
Lemma 3.1, Yueh 2023]

ES (f) =
∑

τ∈F (M)

|f (τ)|2
|τ | .

▶ (If the area-preserving simplicial mapping exists) then every minimizer of
ES (f) is an area-preserving mapping and vice-versa [Theorem 3.3,
Yueh 2023], i.e.,

f = argmin
|g(M)|=|M|

ES (g)

if and only if |f (τ)| = |τ | for every τ ∈ F (M).

Theoretical foundation of the stretch energy minimization for area-preserving
simplicial mappings: [Yueh 2023]

30 / 50

https://epubs.siam.org/doi/10.1137/22M1505062

Geometry of the power manifold
(
S2

)n

We aim to minimize the function E(f) = E(f1, . . . ,fn), where each fℓ , ℓ = 1, . . . ,n,
lives on the same manifold S2.

{ This leads us to consider the power manifold of n unit spheres
(
S2

)n
= S2 × S2 × · · ·S2

︸ ︷︷ ︸
n times

,

with the metric of S2 extended elementwise.

Tools from Riemannian geometry needed to use RGD on this manifold:

▶ The projector onto the tangent space to
(
S2

)n
is used to compute the

Riemannian gradient.

▶ The projection onto
(
S2

)n
turns points of Rn×3 into points of

(
S2

)n
.

▶ The retraction turns an objective function defined on R
n×3 into an objective

function defined on the manifold
(
S2

)n
.

31 / 50

Riemannian gradient descent method

Algorithm 2: The RGD method on
(
S2

)n
.

1 Given objective function E, power manifold
(
S2

)n
, initial iterate(∗)

f(0) ∈
(
S2

)n
, projector P

Tf

(
S2

)n from R
n×3 to Tf

(
S2

)n
, retraction Rf from

Tf

(
S2

)n
to

(
S2

)n
;

Result: Sequence of iterates {f (k)}.
2 k← 0;
3 while f (k) does not sufficiently minimizes E do
4 Compute the Euclidean gradient of the objective function ∇E(f (k));
5 Compute the Riemannian gradient as gradE(f (k)) = P

T
f(k)

(
S2

)n
(
∇E(f (k))

)
;

6 Choose the anti-gradient direction d(k) = −gradE(f (k));
7 Use a line-search procedure to compute a step size αk > 0 that satisfies the

sufficient decrease condition;
8 Set f(k+1) = Rf(k)(αkd(k));
9 k← k +1;

10 end while

(∗) The initial mapping f(0) ∈
(
S2

)n
is computed via the fixed-point iteration (FPI) method of Yueh et

al., 2019, until the first increase in energy is detected.

32 / 50

https://epubs.siam.org/doi/10.1137/18M1201184
https://epubs.siam.org/doi/10.1137/18M1201184

The benchmark triangular mesh models

33 / 50

Resulting spherical mappings

34 / 50

Convergence behavior of RGD

35 / 50

Comparison with other methods
Comparison with the adaptive area-preserving parameterization for genus-zero
closed surfaces proposed by Choi et al., 2022.

Choi et al., 2022 Our RGD method

Model Name SD/Mean EA(f) Time SD/Mean EA(f) Time

Right Hand 18.3283 4.84× 103 218.03 0.1204 9.40× 10−2 4.07
David Head 0.0426 2.27× 10−2 298.76 0.0156 3.04× 10−3 9.16

Cortical Surface 0.6320 1.14× 100 420.20 0.0200 3.72× 10−3 16.01
Bull 8.5565 1.82× 103 34.42 0.1348 2.19× 10−1 18.89

Bulldog 9.2379 1.22× 103 183.94 0.0343 1.27× 10−2 61.93
Lion Statue 0.2626 8.96× 10−1 1498.91 0.1894 4.54× 10−1 76.76
Gargoyle 0.3558 1.30× 100 1483.35 0.0646 4.76× 10−2 80.52

Max Planck 11.6875 1.49× 103 195.39 0.0525 3.39× 10−2 75.60
Bunny 27.6014 8.94× 103 157.87 0.0390 1.91× 10−2 89.62

Chess King 11.8300 1.65× 103 608.55 0.0647 5.23× 10−2 207.47
Art Statuette 394.4414 9.93× 100 2284.79 0.0405 2.10× 10−2 654.57
Bimba Statue 0.5110 2.01× 100 16 773.34 0.0512 3.29× 10−2 775.36

Adaptive area-preserving parameterization for genus-zero closed surfaces:
[Choi/Giri/Kumar 2022]

36 / 50

https://www.sciencedirect.com/science/article/pii/S0010482522004942

Surface registration

▶ A registration mapping between surfacesM0 andM1 is a bijective mapping
g : M0→M1. An ideal registration mapping keeps important landmarks
aligned while preserving specified geometry properties.

▶ Framework for the computation of landmark-aligned area-preserving
parameterizations of genus-zero closed surfaces.

▶ Illustration with the landmark-aligned morphing process from one brain to
another.

Problem statement: Given a set of landmark pairs {(pi ,qi) | pi ∈M0, qi ∈M1}mi=1,
our goal is to compute an area-preserving simplicial mapping g : M0→M1 that
satisfies g(pi) ≈ qi , for i = 1, . . . ,m.

M0 M1

g

37 / 50

Brain morphing

▶ Brain morphing via the linear homotopy method.

▶ A landmark-aligned morphing process fromM0 toM1 can be constructed
by the linear homotopy H : M0 × [0,1]→R

3 defined as

H(v, t) = (1− t)v + t g(v).

▶ We demonstrate the morphing process from one brain to another brain by
four snapshots at four different values of t.

H(M0 ,0) =M0 H(M0 ,0.33) H(M0 ,0.67) H(M0 ,1) =M1

38 / 50

RGD for area-preserving mappings - summary
Main contributions:

▶ Riemannian optimization & computational geometry{ RGD method for
computing spherical area-preserving mappings of genus-zero closed surfaces.

▶ Extensive numerical experiments on various mesh models to demonstrate the
algorithm’s stability and effectiveness.

▶ Landmark-aligned surface registration
between two human brain models.

Outlook and ongoing work:
▶ Enhance the speed of convergence of the

algorithm using appropriate Riemannian
generalizations of the conjugate gradient
method or the limited memory BFGS method.

▶ Target area-preserving mappings of genus-one
closed surfaces, e.g., the ring torus. Ongoing
work with Mei-Heng Yueh.

39 / 50

Shooting methods for computing geodesics on Stiefel

Paper: A single shooting method with approximate Fréchet derivative for
computing geodesics on the Stiefel manifold, M. Sutti, Electron. Trans. Numer.
Anal. (ETNA), Vol. 60, 501–519, September 2024.

▶ Many applications in diverse fields
deal with data belonging to the
Stiefel manifold

St(n,p) = {X ∈Rn×p : X⊤X = Ip}.

TXSt(n,p)

St(n,p)

Z

X

▶ Evaluation of the distance between two points on St(n,p).

▶ No closed-form solution is known for St(n,p) !

This part of the talk:

I. Motivating example: interpolation on manifolds.

II. Computational framework based on the shooting method.

III. Comparisons with other state-of-the-art methods.
40 / 50

https://doi.org/10.1007/s10915-024-02629-8
https://doi.org/10.1007/s10915-024-02629-8

A motivating example: interpolation on manifolds

▶ Model order reduction (MOR) for dynamical systems parametrized according
to p = [p1, . . . ,pd]

⊤.
▶ Suppose we have a set of local orthonormal basis matrices {V1,V2, . . . ,VK }.
▶ Given a new parameter value p̂, a basis V̂ can be obtained by interpolating

the local basis matrices on a tangent space to St(n,r).

▶ For interpolation on TV3
St(n,r), the distance is needed.

St(n,r)

TV3
St(n,r)

V3

V2

Γ2 = LogV3
(V2)

V1

Γ1 = LogV3
(V1)

V4

Γ4 = LogV3
(V4)Γ̂

ExpV3

(
Γ̂
)
= V̂

MOR, POD: [Benner/Gugercin/Willcox 2015]
Interpolation on manifolds: [Hüper/Silva Leite 2007, Amsallem 2010, Amsallem/Farhat 2011]

41 / 50

https://epubs.siam.org/doi/10.1137/130932715
https://link.springer.com/article/10.1007/s10883-007-9027-3
https://stacks.stanford.edu/file/druid:dw083rz0825/amsallem_thesis-augmented.pdf
https://epubs.siam.org/doi/10.1137/100813051

Riemannian distance on St(n,p)

▶ Property: Given X, Y ∈ St(n,p), s.t. ExpX(ξ) = Y , the Riemannian distance
d(X,Y) equals the length of ξ ≡ .

Z(0) ∈ TXSt(n,p):

d(X,Y) = ∥ξ∥c =
√
⟨ξ,ξ⟩c.

TXSt(n,p)

St(n,p)

ξ

X

Y

Z(t)

Equivalent to: Compute the length of
the Riemannian logarithm of Y with
base point X, i.e.,

LogX(Y) = ξ.

▶ No closed-form solution is known for St(n,p) !

{ How do we compute d(X,Y) in practice / numerically?

42 / 50

Single shooting for BVPs
▶ Boundary value problem (BVP): Find w(x) : [a,b]→R that satisfies

w′′ = f (x,w,w′), with BCs

w(a) = α,

w(b) = β.

▶ Recast it as an initial value problem (IVP): Find w(x) that satisfies

w′′ = f (x,w,w′), with ICs

w(a) = α,

w′(a) = s.

{ In general, this has a unique solution w(x) ≡ w(x;s) which depends on s
(Picard–Lindelöf theorem). Analytical or numerical solution (e.g., Runge–Kutta).

{ Single shooting method for BVPs:

▶ Define F(s) = w(b;s)− β.
▶ Find s̄ s.t. F(s̄) = 0. Usually, with Newton’s method.

BVPs and shooting methods: see, e.g., [Stoer/Bulirsch 1991]
43 / 50

Stiefel geodesics via single shooting

▶ Problem statement:
Find ξ ≡ .

Z(0) ∈ TXSt(n,p)
that satisfies the BVP
..
Z = − .Z .

Z⊤Z −Z((Z⊤ .Z)2 + .
Z⊤

.
Z),

with BCs

Z(0) = X,

Z(1) = Y .

▶ Recall: we have the explicit solution:

TXSt(n,p)

St(n,p)

ξ

X

Y

Z(t)

Z(t) = [X X⊥] exp
([
X⊤ξ −(X⊤⊥ξ)⊤
X⊤⊥ξ O

]
t

)[
Ip
O

]
.

{ Single shooting for Stiefel geodesics:

▶ Define F(ξ) = Z(t=1,ξ) −Y .
▶ Find ξ s.t. F(ξ) = 0 with Newton’s method.

44 / 50

Derivation and approximation/1
▶ Starting from the nonlinear equation

F(ξ) = Z(t=1,ξ) −Y ,
use matrix perturbation theory

F(ξ + δξ) = Z1(ξ + δξ)−Y1 = 0,

Z1(ξ + δξ) = Z1(ξ) +DZ1 [δξ
(k)] + o(∥δξ∥).

▶ Perturbation of the matrix exponential by a matrix E ∈Rn×n is

expm(A+E) = expm(A) +Dexpm(A)[E] + o(∥E∥).
▶ Representation for the Fréchet derivative of the matrix exponential

Dexpm(A)[E] = E +
AE +EA

2
+
A2E +AEA+EA2

3!
+ · · · .

▶ Approximation: keep only the first two terms in the expansion, i.e.,

Dexpm(A)[E] ≈ E +
AE +EA

2
.

Function of matrices: [Higham 2008]
45 / 50

https://epubs.siam.org/doi/book/10.1137/1.9780898717778

Derivation and approximation/2

▶ The last formula can be used to approximate Dexpm(A(ξ))
[
DA(ξ)[δξ]

]
in

DZ1 [δξ(k)]
Z1(ξ) +DZ1 [δξ

(k)]−Y1 = 0,

resulting in

Q ·
(
DA(ξ)[δξ] + 1

2 (A ·DA(ξ)[δξ] +DA(ξ)[δξ] ·A)
)
· In,p = Y1 −Z1.

▶ This is now a linear matrix equation to be solved for δξ .

▶ We obtain a (small-sized) Sylvester equation which can be efficiently solved
with MATLAB’s command lyap to obtain the update δξ .

46 / 50

Algorithm pseudocode

Algorithm 3: A single shooting method on the Stiefel manifold with an ap-
proximation of the Fréchet derivative (SSAF method).

1 Given Y0, Y1;
Result: ξ∗ such that ExpY0(ξ

∗) = Y1.
2 Compute the initial guess ξ(0);
3 Set k = 0;
4 while a stopping criterion is met do
5 Compute F(k) = Z1(1,ξ(k))−Y1;
6 Solve F(k) +DZ1 [δξ(k)] = 0 for δξ(k);
7 Update ξ(k+1)← ξ(k) + δξ(k);
8 Project ξ(k+1) onto TY0St(n,p): ξ

(k+1)← PY0

(
ξ(k+1)

)
;

9 k = k +1;
10 end while

▶ The code was implemented in MATLAB and is freely available on the
repository https://github.com/MarcoSutti/SSAF_2024_repo

47 / 50

https://github.com/MarcoSutti/SSAF_2024_repo

Comparisons with other methods
Table: Comparisons on St(1500,p) with large values of p, for a prescribed d(X,Y) = 0.5π.
Results are averaged over 10 pairs of randomly generated endpoints on St(1500,p).

p
Avg. comput. time (s) Avg. no. of iterations

Bryner, Zimmermann, SSAF, Bryner, Zimmermann, SSAF,
2017 2017 2024 2017 2017 2024

500 12.09 3.30 1.89 3.00 2.00 4.00
700 31.27 8.21 4.56 3.00 2.00 4.00
1000 77.37 20.39 8.82 3.00 2.00 4.00

48 / 50

Shooting for computing geodesics on Stiefel - summary

Main contributions:

▶ Computational framework with the shooting method to compute the
Riemannian distance on the Stiefel manifold.

▶ Computational trick: approximation of the Fréchet derivative involved.

▶ Competitiveness and efficiency of our SSAF method w.r.t. the state-of-the-art
algorithms.

Outlook and ongoing work:

▶ Nonlinear Schwarz methods to compute geodesics on manifolds. Joint work
with Tommaso Vanzan. Tech. report (submitted), September 2024. arXiv
preprint arXiv:2409.01023.

49 / 50

https://arxiv.org/abs/2409.01023

Optimization on matrix manifolds - summary

This talk:
▶ Riemannian optimization framework.

▶ Solid theoretical foundation.
▶ Algorithmic components derived from

Riemannian geometry.
▶ A framework for a wide range of applications:

▶ Data compression, computer graphics,
computing geodesics reduced order models. . .

▶ Common key idea: exploit structure to create
novel and efficient algorithms.

γ(t)

y = Expx(ξ)

TxS2

S2

ξx

Thank you for your attention!
50 / 50

III. Bonus material

Line-search (LS) method

{ How to calculate tk?

▶ Exact line search (LS):
min
t≥0

f (xk + tηk)

▶ tEXk is the unique minimizer if f is strictly convex.

▶ Can sometimes be computed. Good for theory.

▶ In practice, for generic f , we do not use exact LS. Replace exact LS with
something computationally cheaper, but still effective.

{ Armijo line-search (also known as Armijo backtracking, Armijo
condition, sufficient decrease condition, . . .).

Armijo line-search technique: [Armijo 1966]

https://msp.org/pjm/1966/16-1/pjm-v16-n1-p01-p.pdf

Retractions on embedded submanifolds

LetM be an embedded submanifold of a vector space E . Thus TxM is a linear
subspace of TxE ≃ E . Since x ∈M⊆ E and ξ ∈ TxM⊆ TxE ≃ E , with little abuse
of notation we write x+ ξ ∈ E .
{ General recipe to define a retraction Rx(ξ) for embedded submanifolds:

▶ Move along ξ to get to x+ ξ in E .
▶ Map x+ ξ back toM. For matrix manifolds, use matrix decompositions.

Example. LetM = Sn−1, then the
retraction at x ∈ Sn−1 is

Rx(ξ) =
x+ ξ
∥x+ ξ∥ ,

defined for all ξ ∈ TxS
n−1. Rx(ξ) is

the point on Sn−1 that minimizes the
distance to x+ ξ .

y = Rx(ξ)

TxS2

S2

ξx

Motivation for the low-rank format/2

Σ

U

V
T

r n

X

n

n = n

r

r r

▶ Storing a dense 5000× 5000 matrix in double precision takes
50002 × 8/220 ≈ 191 MB.
▶ If it has rank 10 and we store only its factors, it takes

(2× 5000× 10+10)× 8/220 = 0.76 kB.

▶ If it has rank 100 and we store only its factors, it takes
(2× 5000× 100+100)× 8/220 = 7.63 MB.

▶ For a matrix stored in the dense format, the storage complexity grows as n2,
but if the matrix is stored in low-rank format, then the storage grows as nr .

Riemannian Hessian and preconditioning/2
▶ Applying the preconditioner in X ∈Mr means solving for ξ ∈ TXM the

system
HX vec(ξ) = vec(η),

where η ∈ TXM is a known tangent vector.

▶ This is equivalent to
PX(Aξ + ξA) = η.

▶ Using the definition of the orthogonal projector onto TXMr , we obtain

PU (Aξ + ξA)PV + P ⊥U (Aξ + ξA)PV + PU (Aξ + ξA)P ⊥V = η,

which is equivalent to the system

PU (Aξ + ξA)PV = PUηPV ,

P ⊥U (Aξ + ξA)PV = P ⊥U ηPV ,

PU (Aξ + ξA)P ⊥V = PUηP
⊥
V .

...

{Many (tedious) calculations, but the numerical results are quite striking!

“LYAP” variational problem

Table: Effect of preconditioning: dependence on size for LYAP.

Rank 5 Rank 10

Prec. size 10 11 12 13 14 15 10 11 12 13 14 15

No
nouter 51 54 61 59 162 92 300 103 61 63 62 59∑
ninner 4561 9431 21066 36556 30069 30096 27867 30025 33818 45760 44467 38392

maxninner 1801 3191 7055 9404 1194 1851 2974 3385 8894 24367 24537 25013

Yes
nouter 41 45 50 52 56 60 44 64 62 53 56 56∑
ninner 44 45 50 52 56 60 69 104 82 60 69 56

maxninner 4 1 1 1 1 1 9 9 8 8 8 1

▶ Stopping criterion: maximum number of outer iterations nmax outer = 300.
The inner solver is stopped when

∑
ninner first exceeds 30000.

▶ Impressive reduction in the number of iterations of the inner solver.

▶ nouter and
∑
ninner depend (quite mildly) on size, while maxninner is

basically constant.

An example of factorized gradient
▶ “LYAP” functional: F (w(x,y)) =

∫
Ω

1
2∥∇w(x,y)∥2 −γ(x,y)w(x,y)dxdy.

▶ The gradient of F is the variational derivative δF
δw = −∆w −γ .

▶ The discretized Euclidean gradient in matrix form is given by

G = AW +WA− Γ .
with A is the second-order periodic finite difference differentiation matrix.

▶ The first-order optimality condition G = AW +WA− Γ = 0 is a Lyapunov
(or Sylvester) equation.

{ Factorized Euclidean gradient:

G =
[
AU U Uγ

]
blkdiag

(
Σ, Σ, Σγ

) [
V AV Vγ

]⊤
.

AU

U Uγ

][

Vγ

V AV

T

The Allen–Cahn equation/5 - low-rank evolution/II

▶ We build the functional

min
w
F (w)B

∫

Ω

εh
2
∥∇w∥2 + (1− h)

2
w2 +

h
4
w4 − w̃ ·wdxdy.

(a) (b)

Figure: Panel (a): error versus time for the low-rank evolution of the Allen–Cahn equation.
Panel (b): rank evolution of the reference dense-format solutionWref.

Retraction

▶ The retraction of a tangent vector
ξℓ from TfℓS

2 to S2 is a mapping
Rfℓ : TfℓS

2→ S2, defined by

Rfℓ (ξℓ) =
fℓ + ξℓ
∥fℓ + ξℓ∥

.

Rfℓ(ξℓ)

TfℓS
2

S2

ξℓ
fℓ

▶ For the power manifold
(
S2

)n
, the retraction of all the tangent vectors ξℓ ,

ℓ = 1, . . . ,n, is a mapping Rf : Tf

(
S2

)n→
(
S2

)n
, defined by

[
ξ1 · · · ξn

]⊤ 7→ diag
(

1
∥f1 + ξ1∥2

, . . . ,
1

∥fn + ξn∥2

)[
f1 + ξ1 · · · fn + ξn

]⊤
.

Constructing retractions: [Absil/Malick 2012]

https://epubs.siam.org/doi/10.1137/100802529

Comparison with other methods/1

Comparison with the fixed-point iteration method for minimizing the authalic
energy EA of Yueh et al., 2019.

Fixed point method [Yueh et al. 19] Our RGD method

Model Name SD/Mean EA(f) Time SD/Mean EA(f) Time

Right Hand 0.4598 2.92× 100 1.35 0.1204 9.40× 10−2 4.07
David Head 0.0169 3.58× 10−3 4.30 0.0156 3.04× 10−3 9.16

Cortical Surface 0.0174 3.21× 10−3 5.62 0.0200 3.72× 10−3 16.01
Bull 0.1876 4.59× 10−1 6.90 0.1348 2.19× 10−1 18.89

Bulldog 0.1833 3.99× 10−1 22.22 0.0343 1.27× 10−2 61.93
Lion Statue 0.2064 5.28× 10−1 23.67 0.1894 4.54× 10−1 76.76
Gargoyle 4.1020 4.85× 102 36.10 0.0646 4.76× 10−2 80.52

Max Planck 0.1844 1.67× 101 25.99 0.0525 3.39× 10−2 75.60
Bunny 0.0394 3.96× 10−2 35.78 0.0390 1.91× 10−2 89.62

Chess King 1.0903 1.79× 101 88.04 0.0647 5.23× 10−2 207.47
Art Statuette 0.0908 1.07× 10−1 342.95 0.0405 2.10× 10−2 654.57
Bimba Statue 0.0932 7.42× 10−2 305.00 0.0512 3.29× 10−2 775.36

Fixed-point iteration method for minimizing the authalic energy: [Yueh et al. 2019]

https://epubs.siam.org/doi/10.1137/18M1201184

Metrics and geodesics on St(n,p)

Embedded metric:

⟨ξ,η⟩ = Tr(ξ⊤η).

Canonical metric:

⟨ξ,η⟩c = Tr(ξ⊤(I − 1
2XX⊤)η).

Length of a tangent vector ξ = XΩ +X⊥K :

∥ξ∥F =
√
⟨ξ,ξ⟩ =

√
∥Ω∥2F + ∥K∥2F. ∥ξ∥c =

√
⟨ξ,ξ⟩c =

√
1
2∥Ω∥2F + ∥K∥2F.

▶ Closed-form solution (with the canonical
metric) for a geodesic Z(t) that realizes ξ
with base point X:

Z(t) = [X X⊥] exp
([
X⊤ξ −(X⊤⊥ξ)⊤
X⊤⊥ξ O

]
t

)[
Ip
O

]
.

TXSt(n,p)

St(n,p)

ξ

X

Y

Z(t)

Riemannian exponential and logarithm

▶ Given x ∈M and ξ ∈ TxM, the exponential mapping Expx : TxM→M s.t.
Expx(ξ)B γ(1), with γ being the geodesic with γ(0) = x, .γ(0) = ξ .

▶ Corollary: Expx(tξ)B γ(t), for t ∈ [0,1].
▶ ∀x, y ∈M, the mapping Exp−1x (y) ∈ TxM is called logarithm mapping.

Example. LetM = Sn−1, then the
exponential mapping at x ∈ Sn−1 is

y = Expx(ξ) = xcos(∥ξ∥) + ξ
∥ξ∥ sin(∥ξ∥),

and the Riemannian logarithm is

Logx(y) = ξ = arccos(x⊤y) Px y
∥Px y∥

,

where y ≡ γ(1) and Px is the projector
onto

(
span(x)

)⊥
, i.e., Px = I − xx⊤.

γ(t)

y = Expx(ξ)

TxS2

S2

ξx

A motivating example: ROM/3

Transient heat equation on a square domain, with 4 disjoint discs.

▶ FEM discretization with n = 1169. Simulation for t ∈ [0,500], with ∆t = 0.1.

▶ 500 snapshot POD over 5000 timeframes, with a reduced model of size r = 4.

▶ Relative error between y(·; p̂) and yr (·; p̂) is about 1%.

Details for these experiments: [S. 2023]

https://arxiv.org/abs/2309.03585

Comparisons with other methods/2

Table: Comparisons on St(1000,p), for doubling values of p, for a prescribed
d(X,Y) = 0.5π. T = 20, tolerance τ = 10−5. Results are averaged over 100 experiments.

p
Avg. comput. time (s) Avg. no. of iterations

Bryner, Zimmermann, SSAF, Bryner, Zimmermann, SSAF,
2017 2017 2024 2017 2017 2024

20 0.03897 0.00641 0.00391 4.00 3.00 5.02
40 0.09512 0.02957 0.01284 3.00 3.00 5.00
80 0.25528 0.08044 0.03969 3.00 2.00 4.00
160 0.76246 0.24119 0.13763 3.00 2.00 4.00
320 3.99810 1.07286 0.64483 3.00 2.00 4.00
640 23.36386 5.62897 2.80133 3.00 2.00 4.00
▶ The numerical results demonstrate the competitiveness of our SSAF method

in terms of both average computation time and number of iterations w.r.t. the
existing algorithms considered here.

