Riemannian Multigrid Line Search for Low-Rank Problems 低秩度問題的黎曼多網格線搜索

Marco Sutti

Postdoctoral fellow at NCTS 國家理論科學研究中心 數學組、博士後

NCKU Mathematics Colloquium

May 8, 2025

Overview

Paper: Riemannian Multigrid Line Search for Low-Rank Problems, M. Sutti and B. Vandereycken, SIAM J. Sci. Comput., 43(3), A1803–A1831, 2021.

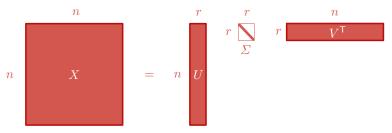
- New algorithm to solve large-scale optimization problems.
- Minimize an objective function on the Riemannian manifold of fixed-rank matrices using a multigrid idea.
 - Low-rank format for efficient implementation.
 - Multilevel idea of Multigrid Line-Search (MGLS) [Wen/Goldfarb 2009].

This talk:

- I. (retraction-based) Riemannian optimization framework.
- II. Optimization on the manifold of fixed-rank matrices.
- III. Multilevel strategy and insight on implementation.
- IV. Numerical experiments.

Low-rank format and motivation

- Often we need to discretize a problem to represent the continuous solution.
- For high-dimensional problems, a "naive" discretization with *n* degrees of freedom in each dimension leads to n^d coefficients.
- ► Since the number of coefficients scales exponentially by *d* but the accuracy is typically determined by *n*, this poses a limitation on the size of the problems → *Curse of dimensionality*.
- ► One possible workaround → use the singular value decomposition (SVD):

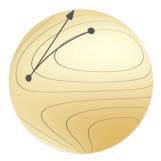


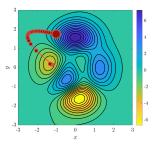
- Only 2nr + r coefficients instead of n^2 . If $r \ll n$, then big memory savings.
- Perform the calculations directly in the factorized format.

I. Optimization on matrix manifolds

Riemannian optimization/1

- The Riemannian optimization framework solves constrained optimization problems where the constraints have a geometric nature.
 - Exploit the underlying geometric structure of the problems. The optimization variables are constrained to a smooth manifold.
- Traditional optimization methods rely on the Euclidean vector space structure.
 - ► E.g., the steepest descent method for minimizing $f : \mathbb{R}^n \to \mathbb{R}$ updates \mathbf{x}_k by moving in the direction \mathbf{d}_k of the anti-gradient of f, by a step size α_k chosen according to a line-search rule.





Manifold optimization: [Edelman et al. 1998, Absil et al. 2008, Boumal 2023], ... The image above has been taken from the Manopt website: https://www.manopt.org/

Riemannian optimization/2

 Formally, we can state the optimization problem as

 $\min_{x\in\mathcal{M}}f(x),$

where $f: \mathcal{M} \to \mathbb{R}$ is the objective function and \mathcal{M} is some matrix manifold.

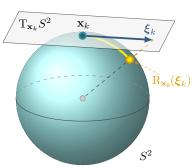
- ► Matrix manifold: any manifold that is constructed from ℝ^{n×p} by taking either embedded submanifolds or quotient manifolds.
 - **Examples of embedded submanifolds:** unit sphere, orthogonal Stiefel manifold, manifold of fixed-rank matrices, ...
 - Examples of quotient manifolds: the Grassmann manifold, the flag manifold.
- ► A manifold *M* endowed with a smoothly-varying inner product (called Riemannian metric *g*) is called Riemannian manifold.

 \rightarrow A couple (\mathcal{M} , g), i.e., a manifold with a Riemannian metric on it.

Manifold optimization: [Edelman et al. 1998, Absil et al. 2008, Boumal 2023], ...

Riemannian optimization/3

- A line-search method in the Riemannian framework determines at x_k on a manifold M a search direction ξ_k on T_{x_k}M.
- ► \mathbf{x}_{k+1} is then determined by a line search along a curve $\alpha \mapsto R_{\mathbf{x}_k}(\alpha \boldsymbol{\xi}_k)$ where $R_{\mathbf{x}_k} : T_{\mathbf{x}_k} \mathcal{M} \to \mathcal{M}$ is the retraction mapping.

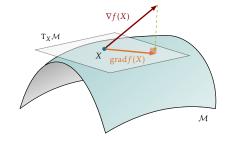


- Repeat for \mathbf{x}_{k+1} in the role of \mathbf{x}_k .
- Search directions can be the negative of the Riemannian gradient, leading to the Riemannian gradient descent method (RGD).
 - ▶ Other choices of search directions ~> other methods, e.g., Riemannian trust-region method or Riemannian BFGS method.

Riemannian trust-region method: [Absil/Baker/Gallivan 2007], Riemannian BFGS: [Ring/Wirth 2012]

Riemannian gradient

Let $f: \mathcal{M} \to \mathbb{R}$. E.g., the objective function in an optimization problem.



 \sim For any embedded submanifold (Prop. 3.6.1 in Absil et al., 2008):

 Riemannian gradient: projection onto T_X M of the Euclidean gradient

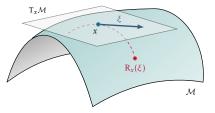
 $\operatorname{grad} f(X) = \operatorname{P}_{\operatorname{T}_X \mathcal{M}}(\nabla f(X)).$

 $\rightsquigarrow \nabla f(X)$ is the **Euclidean gradient** of f(X).

Matrix and vector calculus: The Matrix Cookbook, www.matrixcalculus.org, ... Automatic differentiation on low-rank manifolds: [Novikov/Rakhuba/Oseledets 2022]

Retraction mapping

- Move in the direction of ξ while remaining constrained to \mathcal{M} .
- Smooth mapping $R_x: T_x \mathcal{M} \to \mathcal{M}$ with a local condition that preserves gradients at *x*.



- The Riemannian exponential mapping is also a retraction, but it is not computationally efficient.
- ▶ Retractions: first-order approximation of the Riemannian exponential!

Constructing retractions: [Absil/Malick 2012]

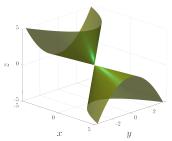
II. Optimization on \mathcal{M}_k

Optimization on \mathcal{M}_k/I

 Optimization problem on the manifold of fixed-rank matrices

 $\mathcal{M}_k = \{ X \in \mathbb{R}^{m \times n} \colon \operatorname{rank}(X) = k \}.$

Using the SVD, one has the equivalent characterization



$$\mathcal{M}_{k} = \{ U \Sigma V^{\top} : \ U^{\top} U = I_{k}, \ V^{\top} V = I_{k}, \\ \Sigma = \operatorname{diag}(\sigma_{1}, \sigma_{2}, \dots, \sigma_{k}) \in \mathbb{R}^{k \times k}, \ \sigma_{1} \ge \dots \ge \sigma_{k} > 0 \}.$$

• A tangent vector ξ at $X = U\Sigma V^{\top}$ is represented as

$$\boldsymbol{\xi} = \boldsymbol{U}\boldsymbol{M}\boldsymbol{V}^\top + \boldsymbol{U}_p\boldsymbol{V}^\top + \boldsymbol{U}\boldsymbol{V}_p^\top,$$

 $M \in \mathbb{R}^{k \times k}, \quad U_p \in \mathbb{R}^{m \times k}, \quad U_p^\top U = 0, \quad V_p \in \mathbb{R}^{n \times k}, \quad V_p^\top V = 0.$

 $\rightsquigarrow \xi$ is a rank-2*k* bounded matrix. Useful in implementation.

Optimizing on submanifold \mathcal{M}_k : [Vandereycken 2013]

Optimization on \mathcal{M}_k/II

► The Riemannian metric is

 $g_X(\xi,\eta) = \langle \xi,\eta \rangle = \operatorname{Tr}(\xi^\top \eta), \text{ with } X \in \mathcal{M}_k \text{ and } \xi,\eta \in \operatorname{T}_X \mathcal{M}_k,$

where ξ , η are seen as matrices in the ambient space $\mathbb{R}^{m \times n}$. \rightsquigarrow Flop count: $4nk + 2k^2$.

Orthogonal projection onto the tangent space at X is

 $\mathbf{P}_{\mathbf{T}_X\mathcal{M}_k} \colon \mathbb{R}^{m \times n} \to \mathbf{T}_X\mathcal{M}_k, \qquad Z \mapsto \mathbf{P}_U Z \mathbf{P}_V + \mathbf{P}_U^{\perp} Z \mathbf{P}_V + \mathbf{P}_U Z \mathbf{P}_V^{\perp}.$

 \sim If *Z* allows for fast matvec product, then $P_{T_X \mathcal{M}_k}$ can also be computed efficiently in the above tangent vector format.

▶ Riemannian gradient: projection onto $T_X M_k$ of the Euclidean gradient

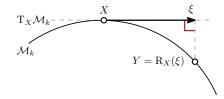
 $\operatorname{grad} f(X) = \operatorname{P}_{\operatorname{T}_X \mathcal{M}_k}(\nabla f(X)).$

Optimization on \mathcal{M}_k /III

- ▶ Smooth map: Retraction R_X : $T_X \mathcal{M}_k \to \mathcal{M}_k$. Typical: truncated SVD.
- Alternative: Orthographic retraction. Given $X = USV^{\top}$ and $\xi = UMV^{\top} + U_pV^{\top} + UV_p^{\top}$ with $U^{\top}U_p = 0$ and $V^{\top}V_p = 0$,

$$R_X(\xi) = (U(S+M) + U_p)(S+M)^{-1}((S+M)V^{\top} + V_p^{\top}).$$

 \rightarrow Flop count: $12nk^2 + \mathcal{O}(k^3)$.



Inverse orthographic retraction of Y at X:

$$\mathbf{R}_X^{-1}(Y) = \mathbf{P}_{\mathbf{T}_X \mathcal{M}_k}(Y - X).$$

Many retractions: [Absil/Malick 2012, Absil/Oseledets 2015]

III. Multigrid and multilevel optimization: from Euclidean to Riemannian

(Linear) Multigrid (in Euclidean space)

- Among the most efficient methods for (discretized) elliptic PDEs.
- ► Idea: hierarchy of grids $\Omega_{h_{\ell_f}}$, $\Omega_{h_{\ell_{f-1}}}$, ..., $\Omega_{h_{\ell_c}}$.

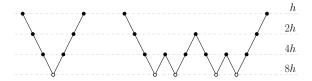


Figure: Illustration of a V- and a W-cycle with cycle index $\gamma = 2$ and four grid levels.

Two basic principles of multigrid:

- 1. **Smoothing principle**. Many classical iterative methods (e.g., Gauss–Seidel) when applied to discrete elliptic problems show a strong smoothing effect on the error of any approximation.
- 2. **Coarse-grid correction principle**. A smooth error term can be well represented on a coarse grid.
- ► Most desirable property of multigrid: mesh-independent convergence.

Nonlinear multigrid in Euclidean space

Full Approximation Scheme (FAS) for nonlinear PDE, A(x) = b.

- ▶ Multigrid idea for solving *A* on several fine and coarse grids.
- Fine grid \cdot_h smooths the error (with cheap algorithm). Coarse grid \cdot_H computes smooth correction (by recursion). Transfer operators I_h^H and I_H^h between grids (by interpolation).
- Discretized nonlinear equation on fine grid:

$$A_h(x_h) = b_h.$$

▶ **Principle behind FAS**: solve for the error e_H in the the coarse-grid equation as a full approximation $\bar{x}_H + e_H$,

$$A_H(\bar{x}_H + e_H) = \underbrace{r_H + A_H(\bar{x}_H)}_{=:b_H},$$

with restricted residual $r_H = I_h^H(A_h(x_h) - b_h)$.

FAS: [Hackbusch 1985, Brandt et al. 1985]

Multilevel optimization in Euclidean space/I

FAS can be generalized to multilevel minimization of an objective f.

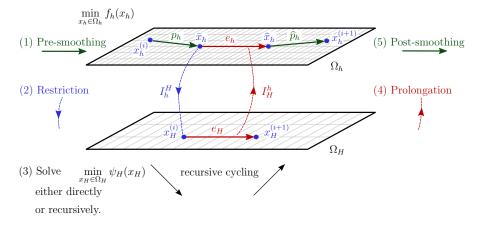
- Objective functions on fine and coarse grids: f_h and f_H .
- MG/Opt: FAS applied to $\nabla f_h(x_h) = 0$ as optimization.
- ► Linear FAS modification to the coarse-grid correction equation

$$\psi_H(x_H^{(i)} + e_H) \coloneqq f_H(x_H^{(i)} + e_H) - \langle x_H^{(i)} + e_H, \nabla f_H(x_H^{(i)}) - I_h^H \nabla f_h(\bar{x}_h) \rangle.$$

- The correction e_H has to be smooth.
- Smoothers: cheap first-order optimization methods (SD, L-BFGS).
- Multi-Grid Line Search (MGLS): Modified line search to enforce convergence to local minima.

MG/Opt: [Nash 2000, Lewis/Nash 2005], MGLS: [Wen/Goldfarb 2009]

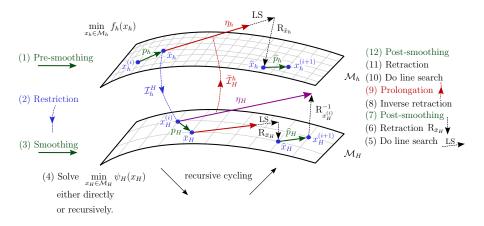
Multilevel optimization in Euclidean space/II



MG/Opt: [Nash 2000, Lewis/Nash 2005], MGLS: [Wen/Goldfarb 2009]

Generalization to Riemannian manifolds: RMGLS

Our contribution: extend MGLS to manifolds \rightsquigarrow Riemannian Multigrid Line-Search (RMGLS).



Coarse-grid correction

Recall for MG/Opt: for fixed $x_H^{(i)}$, minimize for e_H the coarse-grid objective

$$\psi_H(x_H^{(i)} + e_H) \coloneqq f_H(x_H^{(i)} + e_H) - \langle x_H^{(i)} + e_H, \nabla f_H(x_H^{(i)}) - I_h^H \nabla f_h(\bar{x}_h) \rangle.$$

- To extend to manifolds, we interpret e_H as a tangent vector, the summation "+" as a retraction, and $\langle \cdot, \cdot \rangle$ as the Riemannian metric $g(\cdot, \cdot)$.
- ► The linear modification of the coarse-grid objective function

$$\widehat{\psi}_{x_{H}^{(i)}} \colon \mathrm{T}_{x_{H}^{(i)}}\mathcal{M}_{H} \to \mathbb{R}$$
,

is defined by

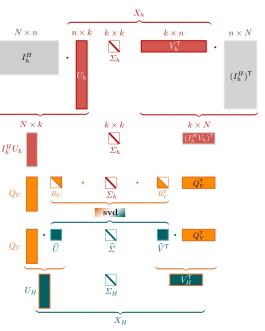
$$\widehat{\psi}_{x_{H}^{(i)}}(\eta_{H}) \coloneqq f_{H}(R_{x_{H}^{(i)}}(\eta_{H})) - g_{x_{H}^{(i)}}(\eta_{H}, \kappa_{H}),$$

with retraction $R_{\boldsymbol{x}_{H}^{(i)}},$ Riemannian metric $g_{\boldsymbol{x}_{H}^{(i)}}$ and

$$\kappa_H = \operatorname{grad} f_H(x_H^{(i)}) - \widetilde{\mathcal{I}}_h^H(\operatorname{grad} f_h(\bar{x}_h)) \in \operatorname{T}_{x_H^{(i)}} \mathcal{M}_H.$$

Transfer operators

- ► Restriction $\mathcal{I}_{h}^{H} : \mathbb{R}^{n \times n} \to \mathbb{R}^{N \times N}$ and prolongation $\mathcal{I}_{H}^{h} : \mathbb{R}^{N \times N} \to \mathbb{R}^{n \times n}$.
- Exploit low rank of iterates and Riemannian gradients / tangent vectors!



IV. Numerical experiments

Lyapunov functional - problem statement

Consider the minimization problem

$$\begin{pmatrix} \min_{w} \mathcal{F}(w(x,y)) = \int_{\Omega} \frac{1}{2} \|\nabla w(x,y)\|^{2} - \gamma(x,y) w(x,y) \, \mathrm{d}x \, \mathrm{d}y \\ \text{such that} \quad w = 0 \text{ on } \partial\Omega, \end{cases}$$

where $\Omega = [0, 1] \times [0, 1]$ and $\gamma = 0$ on $\partial \Omega$.

▶ The variational derivative (Euclidean gradient) of \mathcal{F} is

$$\frac{\delta \mathcal{F}}{\delta w} = -\Delta w - \gamma.$$

Discretization gives the LHS of a Lyapunov equation

$$A_h W_h + W_h A_h - \Gamma_h,$$

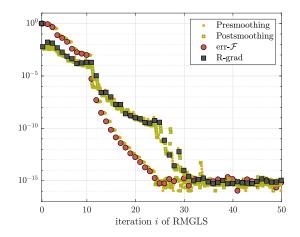
where A_h is the discretized minus Laplacian.

Linear problem, but typical problem for which low-rank methods work very well [Grasedyck 2004, Sabino 2006, Simoncini 2016]:

 $r = \mathcal{O}(\operatorname{rank}(\Gamma_h) \log(1/\varepsilon) \log \kappa(A_h)).$

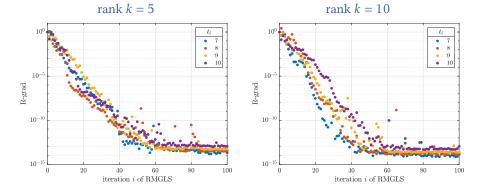
Lyapunov functional – typical convergence

Example: V-cycle, finest level = 8 (about 250 000 gridpoints), coarsest level = 2, rank = 5, number of smoothing steps = 5.



Lyapunov functional - mesh-independence

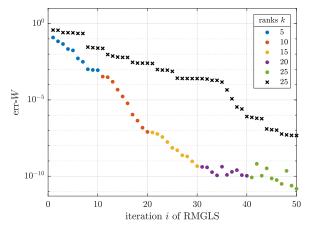
- ► V-cycle, coarsest level = 2.
- ► The sizes of the discretizations are 16384 (•), 65536 (•), 262144 (•) and 1048576 (•).



25/30

Lyapunov functional - rank adaptivity

Example: V-cycle, coarsest level = 4, finest level = 10, rank is increased every 10 iterations.



Nonlinear PDE - problem statement

Nonlinear PDE

$$\begin{cases} -\Delta w + \lambda w(w+1) - \gamma = 0 & \text{in } \Omega, \\ w = 0 & \text{on } \partial \Omega. \end{cases}$$

Prescribe as exact solution (numerical rank 9):

$$w_{\rm ex} = \frac{1}{10} \sin(4\pi^2 (x^2 - x)(y^2 - y)).$$

We get the term

$$\gamma = -\Delta w_{\rm ex} + \lambda w_{\rm ex}(w_{\rm ex} + 1).$$

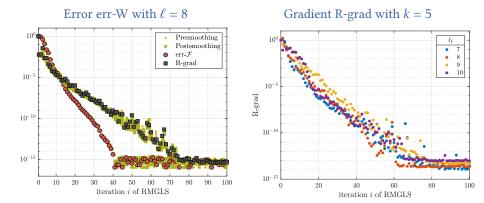
Obtain the variational problem

$$\begin{cases} \min_{w} \mathcal{F}(w) = \int_{\Omega} \frac{1}{2} ||\nabla w||^{2} + \lambda w^{2} \left(\frac{1}{3}w + \frac{1}{2}\right) - \gamma w \, \mathrm{d}x \, \mathrm{d}y \\ \text{such that} \quad w = 0 \text{ on } \partial\Omega. \end{cases}$$

Existing variational problem: [Henson 2003, Wen/Goldfarb 2009]

Nonlinear PDE - similar numerical experiment

Mesh-independent convergence



28/30

Nonlinear PDE – Rank truncated Euclidean multilevel

Rank-truncated Euclidean multilevel (EML) vs RMGLS for different ranks.

In both cases, 8 smoothing steps and coarsest level 7 are used.

				EML	RMGLS		
	level	size	time (s)	$r(W_h^{(\mathrm{end})})$	time (s)	$\ \xi_h^{(end)}\ _{\mathrm{F}}$	$r(W_h^{(\mathrm{end})})$
rank 10	9 10 11	262 144 1 048 576 4 194 304	30 123 797	$\begin{array}{c} 4.7324 \times 10^{-7} \\ 3.4975 \times 10^{-7} \\ 1.2826 \times 10^{-5} \end{array}$	21 61 153	$\begin{array}{c} 7.8437 \times 10^{-13} \\ 4.0398 \times 10^{-13} \\ 5.5800 \times 10^{-13} \end{array}$	3.7321×10^{-7} 1.8660×10^{-7} 9.3301×10^{-8}
rank 15	9 10 11	262 144 1 048 576 4 194 304	107 380 3113	$7.4928 \times 10^{-10} 9.6225 \times 10^{-10} 4.3682 \times 10^{-10}$	92 207 532	$\begin{array}{c} 2.0183 \times 10^{-13} \\ 6.5306 \times 10^{-13} \\ 1.3610 \times 10^{-13} \end{array}$	$\begin{array}{c} 4.2886 \times 10^{-10} \\ 2.6044 \times 10^{-10} \\ 8.3563 \times 10^{-11} \end{array}$

<u>N.B.</u>: "size" means total number of gridpoints in **both** spatial directions (= $2^{2\ell}$).

Conclusion and outlook

This talk:

- → Riemannian Multigrid Line Search for Low-Rank Problems, M. Sutti and B. Vandereycken, SIAM J. Sci. Comput., 43(3), A1803–A1831, 2021.
- New algorithm with low-rank approximations to solve large-scale optimization problems.
- ▶ Optimization on M_k using multilevel idea of [Wen/Goldfarb 2009].

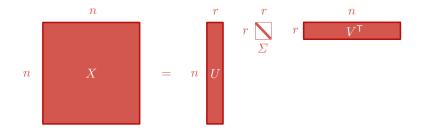
Further research:

- Extend the convergence proof from [Wen/Goldfarb 2009].
- Generalization to tensor problems, coming from high-dimensional PDEs (e.g., Schrödinger equation, Black–Scholes equation...).
- RMGLS for other manifolds (other than \mathcal{M}_k).

Thank you for your attention!

V. Bonus material RMGLS

Motivation for the low-rank format/2



- Storing a dense 5000 × 5000 matrix in double precision takes 5000² × 8/2²⁰ ≈ 191 MB.
 - ► If it has rank 10 and we store only its factors, it takes $(2 \times 5000 \times 10 + 10) \times 8/2^{20} = 0.76$ kB.
 - ► If it has rank 100 and we store only its factors, it takes $(2 \times 5000 \times 100 + 100) \times 8/2^{20} = 7.63$ MB.
- For a matrix stored in the dense format, the storage complexity grows as n², but if the matrix is stored in low-rank format, then the storage grows as nr.

Line-search (LS) method

 \rightarrow How to calculate t_k ?

Exact line search (LS):

 $\min_{t\geq 0} f(x_k + t\eta_k)$

• t_k^{EX} is the unique minimizer if f is strictly convex.

Can sometimes be computed. Good for theory.

▶ In practice, for generic *f*, we do not use exact LS. Replace exact LS with something computationally cheaper, but still effective.

 \sim Armijo line-search (also known as Armijo backtracking, Armijo condition, sufficient decrease condition, ...).

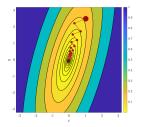
Armijo line-search technique: [Armijo 1966]

Steepest descent on a manifold

► Steepest descent in ℝⁿ is based on the update formula

$$x_{k+1} = x_k + t_k \eta_k$$

where $t_k \in \mathbb{R}$ is the step size and $\eta_k \in \mathbb{R}^n$ is the search direction.



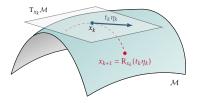
\sim On nonlinear manifolds:

▶ η_k will be a tangent vector to \mathcal{M} at x_k , i.e., $\eta_k \in T_{x_k}\mathcal{M}$.

<u>Remark</u>: If $\eta_k = -\operatorname{grad} f(x_k)$, we get the **Riemannian steepest descent**.

Search along a curve in \mathcal{M} whose tangent vector at $t_k = 0$ is η_k .

\sim Retraction.



Steepest descent on a manifold (reprise)

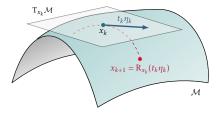
Steepest descent on manifolds is based on the update formula

 $x_{k+1} = \mathbf{R}_{\mathbf{x}_k}(t_k \eta_k),$

where $t_k \in \mathbb{R}$ and $\eta_k \in T_{x_k} \mathcal{M}$.

Recipe for constructing the steepest descent method on a manifold:

- ► Choose a retraction R (previous slide).
- Select a search direction η_k (the anti-gradient $\eta_k = -\operatorname{grad} f(x_k)$).
- Select a step length t_k (with a line-search technique).



Retractions on embedded submanifolds

Let \mathcal{M} be an embedded submanifold of a vector space \mathcal{E} . Thus $T_x \mathcal{M}$ is a linear subspace of $T_x \mathcal{E} \simeq \mathcal{E}$. Since $x \in \mathcal{M} \subseteq \mathcal{E}$ and $\xi \in T_x \mathcal{M} \subseteq T_x \mathcal{E} \simeq \mathcal{E}$, with little abuse of notation we write $x + \xi \in \mathcal{E}$.

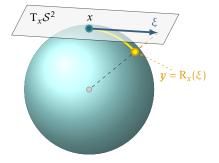
 \sim General recipe to define a retraction $R_x(\xi)$ for embedded submanifolds:

- Move along ξ to get to $x + \xi$ in \mathcal{E} .
- Map $x + \xi$ back to \mathcal{M} . For matrix manifolds, use matrix decompositions.

Example. Let $\mathcal{M} = S^{n-1}$, then the retraction at $x \in S^{n-1}$ is

$$\mathbf{R}_{x}(\xi) = \frac{x+\xi}{\|x+\xi\|},$$

defined for all $\xi \in T_x S^{n-1}$. $R_x(\xi)$ is the point on S^{n-1} that minimizes the distance to $x + \xi$.



One RMGLS iteration starting at $x_h^{(i)}$ to minimize f_h .

- (1) **Pre-smoothing**: $\bar{x}_h = \text{SMOOTH}^{\nu_1}(x_h^{(i)}, f_h)$
- (2) Coarse-grid correction:
 - (a) **Restrict** to the coarse manifold: $x_H^{(i)} = \mathcal{I}_h^H(\bar{x}_h)$
 - (b) Compute the **linear correction term**:

$$\kappa_H = \operatorname{grad} f_H(x_H^{(i)}) - \widetilde{\mathcal{I}}_h^H(\operatorname{grad} f_h(\bar{x}_h))$$

(c) Define the **coarse-grid objective function**

$$\psi_H(x_H) = f_H(x_H) - g_{x_H^{(i)}}(R_{x_H^{(i)}}^{-1}(x_H), \kappa_H)$$

- (d) Compute an **approximate minimizer** $x_H^{(i+1)}$ starting at $x_H^{(i)}$ to minimize ψ_H using either
 - a Riemannian trust-region method (if \mathcal{M}_H is small)
 - one recursive RMGLS iteration (otherwise)
- (e) Compute the **coarse-grid correction**: $\eta_H = R_{x_H^{(i)}}^{-1}(x_H^{(i+1)})$
- (f) **Interpolate** to the fine manifold: $\eta_h = \widetilde{\mathcal{I}}_H^h(\eta_H)$
- (g) Compute the corrected approximation on the fine manifold:

 $\widehat{x}_h = R_{\overline{x}_h}(\alpha^* \eta_h)$ with α^* obtained from line search

(3) **Post-smoothing**: $x_h^{(i+1)} = \text{SMOOTH}^{\nu_2}(\widehat{x}_h, f_h)$

Smoothers

- Many options for smoothers, but they need to be compatible with optimization, like SD or L-BFGS.
- Point smoother, but also line smoothers are possible using cheap preconditioning or quasi-Newton.
- We take half the step size in steepest descent. Similar to Jacobi iteration as smoother, i.e., we do line search, get *α* and then set *α* ← *α*/2.
- For isotropic problems, a small number (5) of steepest descent steps for Riemannian manifolds suffices. Steepest descent plays the role of a smoother.

[[]Wen/Goldfarb 2009, Vandereycken 2010]

"LYAP" variational problem

			Rank 5						Rank 10					
Prec.	size	10	11	12	13	14	15	10	11	12	13	14	15	
No	$\begin{vmatrix} n_{\text{outer}} \\ \sum n_{\text{inner}} \\ \max n_{\text{inner}} \end{vmatrix}$	51 4561 1801	54 9431 3191	61 21066 7055	59 <mark>36556</mark> 9404	162 <mark>30069</mark> 1194	92 <mark>30096</mark> 1851	300 27867 2974	103 30025 3385	61 <mark>33818</mark> 8894	63 45760 24367	62 44467 24537	59 <mark>38392</mark> 25013	
Yes	$\begin{vmatrix} n_{\text{outer}} \\ \sum n_{\text{inner}} \\ \max n_{\text{inner}} \end{vmatrix}$	41 44 4	45 45 1	50 50 1	52 52 1	56 56 1	60 60 1	44 69 9	64 104 9	62 82 8	53 60 <mark>8</mark>	56 69 <mark>8</mark>	56 56 1	

- ► Stopping criterion: maximum number of outer iterations $n_{\text{max outer}} = 300$. The inner solver is stopped when $\sum n_{\text{inner}}$ first exceeds 30 000.
- ► Impressive reduction in the number of iterations of the inner solver.
- n_{outer} and $\sum n_{\text{inner}}$ depend (quite mildly) on size, while $\max n_{\text{inner}}$ is basically constant.

An example of factorized gradient

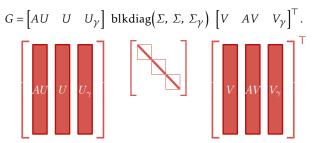
- "LYAP" functional: $\mathcal{F}(w(x,y)) = \int_{\Omega} \frac{1}{2} \|\nabla w(x,y)\|^2 \gamma(x,y) w(x,y) dx dy.$
- The gradient of \mathcal{F} is the variational derivative $\frac{\delta \mathcal{F}}{\delta w} = -\Delta w \gamma$.
- The discretized Euclidean gradient in matrix form is given by

$$G = AW + WA - \Gamma$$

with A is the second-order periodic finite difference differentiation matrix.

► The first-order optimality condition $G = AW + WA - \Gamma = 0$ is a Lyapunov (or Sylvester) equation.

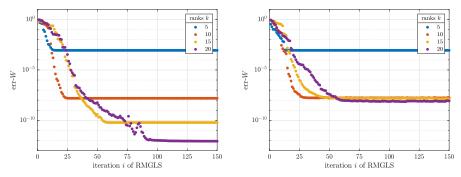
 \rightsquigarrow Factorized Euclidean gradient:



Lyapunov – importance of line search

- Compare LS: standard Wolfe vs Hager-Zhang (developed for nonlinear CG in Rⁿ but can be extended to general manifolds like M_k).
- ▶ The relative error in Frobenius norm of the low-rank approximation:

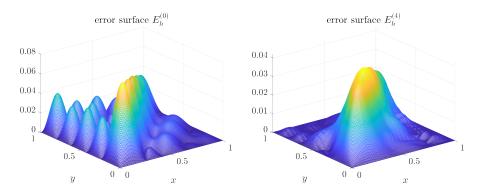
$$\operatorname{err-}W(i) \coloneqq \|W_h^{(i)} - W_h^{(*)}\|_{\mathrm{F}} / \|W_h^{(*)}\|_{\mathrm{F}}$$



Lyapunov - smoothness of the error

Example: V-cycle, finest level = 8 (about 250 000 gridpoints), coarsest level = 5, rank = 5, number of smoothing steps = 5.

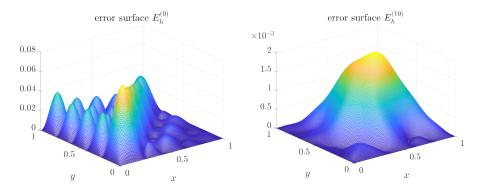
$$E_h^{(i)} \coloneqq |W_h^{(i)} - W_h^{(*)}|$$



Nonlinear PDE - smoothness of the error

Example: V-cycle, finest level = 8 (about 250 000 gridpoints), coarsest level = 5, rank = 5, number of smoothing steps = 5.

$$E_h^{(i)} \coloneqq |W_h^{(i)} - W_h^{(*)}|$$



VI. Bonus material Riemannian Hager–Zhang line search

A motivating example: Quadratic cost function

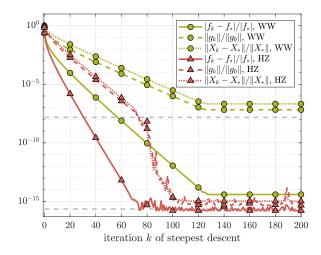
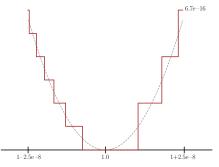


Figure: Convergence behavior of line search with weak Wolfe (WW) or Hager–Zhang (HZ) when applied to a quadratic function f. The objective function is denoted by f_k and the gradient by g_k . The horizontal dashed lines indicate $\sqrt{\varepsilon_{\text{mach}}}$ and $\varepsilon_{\text{mach}}$.

HZLS/I

- Line searches usually have sufficient decrease as stopping criteria (Wolfe, Armijo).
- In finite precision, this condition cannot be satisfied close to the local minimum.
- One can only expect the minimum to be determined within $\sqrt{\varepsilon_{\text{mach}}}$.

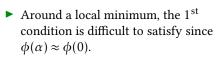


- Use approximate Wolfe conditions instead, based on the derivative of the objective function. Accurate within ε_{mach}.
- Reason: Finding the zero of the derivative f' of an approximate quadratic f is numerically more accurate than minimizing f.
- ► In principle: simply use MATLAB's fzero on *f* ′ but this is too expensive for local optimization methods.

[Hager/Zhang 2005-2006]

HZLS/II

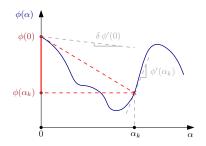
► (weak) Wolfe conditions in terms of $\phi(\alpha) \coloneqq f(x_k + \alpha d_k)$ $\phi(\alpha_k) - \phi(0) \le \alpha_k \delta \phi'(0),$ $\phi'(\alpha_k) \ge \sigma \phi'(0),$ $0 < \delta \le \sigma < 1.$



Approximate Wolfe conditions

 $(2\delta-1)\,\phi'(0) \geqslant \phi'(\alpha_k) \geqslant \sigma\,\phi'(0), \qquad 0 < \delta < 0.5, \quad \delta \leqslant \sigma < 1.$

Only the 1st inequality is an approximation of the original conditions, so it would be more appropriate to talk about approximate Armijo.



HZLS/III

► Why approximate?

Build a special quadratic interpolant q(α) of φ(α) such that the finite difference (FD) quotient in the 1st Wolfe condition can be approximated by

$$\frac{\phi(\alpha_k) - \phi(0)}{\alpha_k} \approx \frac{q(\alpha_k) - q(0)}{\alpha_k} = \frac{\phi'(\alpha_k) + \phi'(0)}{2}$$

This gives the inequality

$$(2\delta-1)\,\phi'(0) \ge \phi'(\alpha_k).$$

- With this approximation we circumvent the numerical errors inherent in the original FD quotient.
- HZLS can be generalized to the Riemannian framework using the derivative of the retraction R'_X. Seems restrictive but, in practice, it is not: automatic differentiation and we are allowed to change retraction.

Rayleigh quotient on the sphere

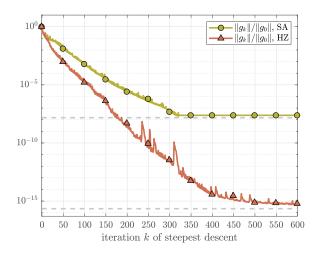


Figure: Convergence behavior of steepest descent with standard Armijo (SA) or Hager–Zhang (HZ) line search when applied to the Rayleigh quotient on the sphere. The gradient is denoted by g_k . The horizontal dashed lines indicate $\sqrt{\varepsilon_{\text{mach}}}$ and $\varepsilon_{\text{mach}}$.

Brockett cost function on the Stiefel manifold

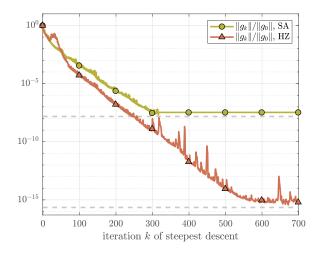


Figure: Convergence behavior of steepest descent with standard Armijo (SA) or Hager–Zhang (HZ) line search when applied to the Brockett cost function on the Stiefel manifold. The gradient is denoted by g_k . The horizontal dashed lines indicate $\sqrt{\varepsilon_{\text{mach}}}$ and $\varepsilon_{\text{mach}}$.