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Overview

Paper: Riemannian Multigrid Line Search for Low-Rank Problems, M. Sutti and B.
Vandereycken, SIAM J. Sci. Comput., 43(3), A1803–A1831, 2021.

▶ New algorithm to solve large-scale optimization problems.
▶ Minimize an objective function on the Riemannian manifold of fixed-rank

matrices using a multigrid idea.
▶ Low-rank format for efficient implementation.

▶ Multilevel idea of Multigrid Line-Search (MGLS) [Wen/Goldfarb 2009].

This talk:

I. (retraction-based) Riemannian optimization framework.

II. Optimization on the manifold of fixed-rank matrices.

III. Multilevel strategy and insight on implementation.

IV. Numerical experiments.
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Low-rank format and motivation
▶ Often we need to discretize a problem to represent the continuous solution.

▶ For high-dimensional problems, a “naive” discretization with n degrees of
freedom in each dimension leads to nd coefficients.

▶ Since the number of coefficients scales exponentially by d but the accuracy is
typically determined by n, this poses a limitation on the size of the problems
{ Curse of dimensionality.

▶ One possible workaround{ use the singular value decomposition (SVD):
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V
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r n
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n

n = n

r

r r

▶ Only 2nr + r coefficients instead of n2. If r ≪ n, then big memory savings.

▶ Perform the calculations directly in the factorized format.
3 / 30



I. Optimization on matrix manifolds



Riemannian optimization/1
▶ The Riemannian optimization

framework solves constrained
optimization problems where the
constraints have a geometric
nature.
▶ Exploit the underlying geometric

structure of the problems. The
optimization variables are
constrained to a smooth manifold.

▶ Traditional optimization methods
rely on the Euclidean vector space
structure.
▶ E.g., the steepest descent method

for minimizing f : Rn→R

updates xk by moving in the
direction dk of the anti-gradient of
f , by a step size αk chosen
according to a line-search rule.

Manifold optimization: [Edelman et al. 1998, Absil et al. 2008, Boumal 2023], . . .
The image above has been taken from the Manopt website: https://www.manopt.org/
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Riemannian optimization/2

▶ Formally, we can state the optimization
problem as

min
x∈M

f (x),

where f : M→R is the objective function
andM is some matrix manifold.

▶ Matrix manifold: any manifold that is constructed from R
n×p by taking

either embedded submanifolds or quotient manifolds.

▶ Examples of embedded submanifolds: unit sphere, orthogonal Stiefel manifold,
manifold of fixed-rank matrices, . . .

▶ Examples of quotient manifolds: the Grassmann manifold, the flag manifold.

▶ A manifoldM endowed with a smoothly-varying inner product (called
Riemannian metric g) is called Riemannian manifold.

{ A couple (M, g), i.e., a manifold with a Riemannian metric on it.

Manifold optimization: [Edelman et al. 1998, Absil et al. 2008, Boumal 2023], . . .
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Riemannian optimization/3

▶ A line-search method in the
Riemannian framework determines
at xk on a manifoldM a search
direction ξk on TxkM.

▶ xk+1 is then determined by a line
search along a curve α 7→ Rxk (αξk)
where Rxk : TxkM→M is the
retraction mapping.

▶ Repeat for xk+1 in the role of xk .

Rxk
(ξk)

Txk
S2

S2

ξk
xk

▶ Search directions can be the negative of the Riemannian gradient, leading to
the Riemannian gradient descent method (RGD).
▶ Other choices of search directions{ other methods, e.g., Riemannian

trust-region method or Riemannian BFGS method.

Riemannian trust-region method: [Absil/Baker/Gallivan 2007], Riemannian BFGS:
[Ring/Wirth 2012]
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Riemannian gradient

Let f : M→R. E.g., the objective function in an optimization problem.

{ For any embedded submanifold
(Prop. 3.6.1 in Absil et al., 2008):

▶ Riemannian gradient: projection
onto TXM of the Euclidean
gradient

gradf (X) = PTXM(∇f (X)).

TXM

M

X

∇f (X)

gradf (X)

{ ∇f (X) is the Euclidean gradient of f (X).

Matrix and vector calculus: The Matrix Cookbook, www.matrixcalculus.org, . . .
Automatic differentiation on low-rank manifolds: [Novikov/Rakhuba/Oseledets 2022]
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Retraction mapping

▶ Move in the direction of ξ while remaining constrained toM.

▶ Smooth mapping Rx : TxM→M with a local condition that preserves
gradients at x.

TxM

M

ξ

x

Rx(ξ)

▶ The Riemannian exponential mapping is also a retraction, but it is not
computationally efficient.

▶ Retractions: first-order approximation of the Riemannian exponential!

Constructing retractions: [Absil/Malick 2012]
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II. Optimization onMk



Optimization onMk/I
▶ Optimization problem on the

manifold of fixed-rank matrices

Mk = {X ∈Rm×n : rank(X) = k}.
▶ Using the SVD, one has the

equivalent characterization

Mk = {UΣV ⊤ : U⊤U = Ik , V
⊤V = Ik ,

Σ = diag(σ1,σ2, . . . ,σk) ∈Rk×k , σ1 ≥ · · · ≥ σk > 0}.
▶ A tangent vector ξ at X =UΣV ⊤ is represented as

ξ =UMV ⊤ +UpV ⊤ +UV ⊤p ,

M ∈Rk×k , Up ∈Rm×k , U⊤p U = 0, Vp ∈Rn×k , V ⊤p V = 0.

{ ξ is a rank-2k bounded matrix. Useful in implementation.

Optimizing on submanifoldMk : [Vandereycken 2013]
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Optimization onMk/II

▶ The Riemannian metric is

gX(ξ,η) = ⟨ξ,η⟩ = Tr(ξ⊤η), with X ∈Mk and ξ,η ∈ TXMk ,

where ξ , η are seen as matrices in the ambient space Rm×n.

{ Flop count: 4nk +2k2.

▶ Orthogonal projection onto the tangent space at X is

PTXMk
: Rm×n→ TXMk , Z 7→ PU ZPV +P⊥U ZPV +PU ZP⊥V .

{ If Z allows for fast matvec product, then PTXMk
can also be computed

efficiently in the above tangent vector format.

▶ Riemannian gradient: projection onto TXMk of the Euclidean gradient

gradf (X) = PTXMk
(∇f (X)).
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Optimization onMk/III

▶ Smooth map: Retraction RX : TXMk →Mk . Typical: truncated SVD.

▶ Alternative: Orthographic retraction. Given X =USV ⊤ and
ξ =UMV ⊤ +UpV ⊤ +UV ⊤p with U⊤Up = 0 and V ⊤Vp = 0,

RX(ξ) = (U (S +M) +Up)(S +M)−1((S +M)V ⊤ +V ⊤p ).

{ Flop count: 12nk2 +O(k3).
ξ

TXMk

X

Mk

Y = RX(ξ)

▶ Inverse orthographic retraction of Y at X:

R−1X (Y ) = PTXMk
(Y −X).

Many retractions: [Absil/Malick 2012, Absil/Oseledets 2015]
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III. Multigrid and multilevel optimization:
from Euclidean to Riemannian



(Linear) Multigrid (in Euclidean space)
▶ Among the most efficient methods for (discretized) elliptic PDEs.

▶ Idea: hierarchy of gridsΩhℓf
, Ωhℓf−1

, . . . , Ωhℓc
.

h

2h

4h

8h

Figure: Illustration of a V- and a W-cycle with cycle index γ = 2 and four grid levels.

Two basic principles of multigrid:

1. Smoothing principle. Many classical iterative methods (e.g., Gauss–Seidel)
when applied to discrete elliptic problems show a strong smoothing effect on
the error of any approximation.

2. Coarse-grid correction principle. A smooth error term can be well
represented on a coarse grid.

▶ Most desirable property of multigrid: mesh-independent convergence.
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Nonlinear multigrid in Euclidean space

Full Approximation Scheme (FAS) for nonlinear PDE, A(x) = b.

▶ Multigrid idea for solving A on several fine and coarse grids.

▶ Fine grid ·h smooths the error (with cheap algorithm). Coarse grid ·H
computes smooth correction (by recursion). Transfer operators IHh and IhH
between grids (by interpolation).

▶ Discretized nonlinear equation on fine grid:

Ah(xh) = bh.

▶ Principle behind FAS: solve for the error eH in the the coarse-grid equation
as a full approximation x̄H + eH ,

AH (x̄H + eH ) = rH +AH (x̄H )︸         ︷︷         ︸
CbH

,

with restricted residual rH = IHh (Ah(xh)− bh).
FAS: [Hackbusch 1985, Brandt et al. 1985]
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Multilevel optimization in Euclidean space/I

FAS can be generalized to multilevel minimization of an objective f .

▶ Objective functions on fine and coarse grids: fh and fH .

▶ MG/Opt: FAS applied to ∇fh(xh) = 0 as optimization.

▶ Linear FAS modification to the coarse-grid correction equation

ψH (x
(i)
H + eH )B fH (x

(i)
H + eH )−⟨x(i)H + eH , ∇fH (x(i)H )− IHh ∇fh(x̄h)⟩.

▶ The correction eH has to be smooth.

▶ Smoothers: cheap first-order optimization methods (SD, L-BFGS).

▶ Multi-Grid Line Search (MGLS): Modified line search to enforce convergence
to local minima.

MG/Opt: [Nash 2000, Lewis/Nash 2005], MGLS: [Wen/Goldfarb 2009]
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Multilevel optimization in Euclidean space/II

recursive cycling

IH
h

Ih
H

Ωh

ΩH

min
xh∈Ωh

fh(xh)

min
xH∈ΩH

ψH(xH)

x
(i+1)
h

ph x̄h
p̂hx̂heh

eH

x
(i)
h

x
(i+1)
H

x
(i)
H

(3) Solve

(2) Restriction

(1) Pre-smoothing

(4) Prolongation

(5) Post-smoothing

either directly

or recursively.

MG/Opt: [Nash 2000, Lewis/Nash 2005], MGLS: [Wen/Goldfarb 2009]
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Generalization to Riemannian manifolds: RMGLS

Our contribution: extend MGLS to manifolds{ Riemannian Multigrid
Line-Search (RMGLS).

MH

Mh

LS

Rx̄h

˜Ih

H

LS

ηh

ηH
R−1

x
(i)
H

IH

h

recursive cycling

min
xh∈Mh

fh(xh)

min
xH∈MH

ψH(xH)

x
(i+1)
h

x̂h

p̂h
x̄h

ph

x
(i)
h

x
(i)
H

pH
x̄H x

(i+1)
H

p̂HRx̄H

x̂H

(9) Prolongation

(12) Post-smoothing

(4) Solve

(2) Restriction

(1) Pre-smoothing

either directly

or recursively.

(3) Smoothing (5) Do line search LS

(6) Retraction

(7) Post-smoothing
(8) Inverse retraction

(10) Do line search

(11) Retraction

Rx̄H

RMGLS: [S./Vandereycken 2021]
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Coarse-grid correction
Recall for MG/Opt: for fixed x(i)H , minimize for eH the coarse-grid objective

ψH (x
(i)
H + eH )B fH (x

(i)
H + eH )−⟨x(i)H + eH , ∇fH (x(i)H )− IHh ∇fh(x̄h)⟩.

▶ To extend to manifolds, we interpret eH as a tangent vector, the summation
“+” as a retraction, and ⟨·, ·⟩ as the Riemannian metric g(·, ·).

▶ The linear modification of the coarse-grid objective function

ψ̂
x
(i)
H
: T

x
(i)
H
MH →R,

is defined by

ψ̂
x
(i)
H
(ηH )B fH (Rx(i)H

(ηH ))−g
x
(i)
H
(ηH ,κH),

with retraction R
x
(i)
H
, Riemannian metric g

x
(i)
H
and

κH = gradfH (x
(i)
H )− ĨHh (gradfh(x̄h)) ∈ Tx(i)HMH .
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Transfer operators

▶ Restriction
IHh : Rn×n→R

N×N and
prolongation
IhH : RN×N →R

n×n.

▶ Exploit low rank of iterates
and Riemannian gradients /
tangent vectors!

Σh

Uh (IH
h
)T

V T

h

IH
h

N × n n× k k × k k × n n×N

N × k k × k k ×N

IH
h
Uh

(IHh Vh)
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IV. Numerical experiments



Lyapunov functional – problem statement
▶ Consider the minimization problemmin

w
F (w(x,y)) =

∫
Ω

1
2∥∇w(x,y)∥2 −γ(x,y)w(x,y)dxdy

such that w = 0 on ∂Ω,

whereΩ = [0,1]× [0,1] and γ = 0 on ∂Ω.

▶ The variational derivative (Euclidean gradient) of F is
δF
δw

= −∆w −γ.
▶ Discretization gives the LHS of a Lyapunov equation

AhWh +WhAh − Γh,
where Ah is the discretized minus Laplacian.

▶ Linear problem, but typical problem for which low-rank methods work very
well [Grasedyck 2004, Sabino 2006, Simoncini 2016]:

r = O(rank(Γh) log(1/ε) logκ(Ah)).
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Lyapunov functional – typical convergence

Example: V-cycle, finest level = 8 (about 250000 gridpoints), coarsest level = 2,
rank = 5, number of smoothing steps = 5.
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Lyapunov functional – mesh-independence

▶ V-cycle, coarsest level = 2.

▶ The sizes of the discretizations are 16384 (•), 65536 (•), 262144 (•) and
1048576 (•).

rank k = 5 rank k = 10

25 / 30



Lyapunov functional – rank adaptivity

Example: V-cycle, coarsest level = 4, finest level = 10, rank is increased every 10
iterations.
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Nonlinear PDE – problem statement
▶ Nonlinear PDE −∆w+λw(w+1)−γ = 0 inΩ,

w = 0 on ∂Ω.

▶ Prescribe as exact solution (numerical rank 9):

wex =
1
10 sin(4π

2(x2 − x)(y2 − y)).

▶ We get the term
γ = −∆wex +λwex(wex +1).

▶ Obtain the variational problemmin
w
F (w) =

∫
Ω

1
2∥∇w∥2 +λw2

(
1
3w+ 1

2

)
−γwdxdy

such that w = 0 on ∂Ω.

Existing variational problem: [Henson 2003, Wen/Goldfarb 2009]
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Nonlinear PDE – similar numerical experiment

Mesh-independent convergence

Error err-W with ℓ = 8 Gradient R-grad with k = 5
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Nonlinear PDE – Rank truncated Euclidean multilevel

Rank-truncated Euclidean multilevel (EML) vs RMGLS for different ranks.

In both cases, 8 smoothing steps and coarsest level 7 are used.

EML RMGLS

level size time (s) r(W (end)
h ) time (s) ∥ξ(end)h ∥F r(W (end)

h )

ra
nk

10 9 262 144 30 4.7324× 10−7 21 7.8437× 10−13 3.7321× 10−7
10 1 048 576 123 3.4975× 10−7 61 4.0398× 10−13 1.8660× 10−7
11 4 194 304 797 1.2826× 10−5 153 5.5800× 10−13 9.3301× 10−8

ra
nk

15 9 262 144 107 7.4928× 10−10 92 2.0183× 10−13 4.2886× 10−10
10 1 048 576 380 9.6225× 10−10 207 6.5306× 10−13 2.6044× 10−10
11 4 194 304 3 113 4.3682× 10−10 532 1.3610× 10−13 8.3563× 10−11

N.B.: “size” means total number of gridpoints in both spatial directions (= 22ℓ ).
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Conclusion and outlook
This talk:

{ Riemannian Multigrid Line Search for Low-Rank Problems, M. Sutti and B.
Vandereycken, SIAM J. Sci. Comput., 43(3), A1803–A1831, 2021.

▶ New algorithm with low-rank approximations to solve large-scale
optimization problems.

▶ Optimization onMk using multilevel idea of [Wen/Goldfarb 2009].

Further research:

▶ Extend the convergence proof from [Wen/Goldfarb 2009].

▶ Generalization to tensor problems, coming from high-dimensional PDEs
(e.g., Schrödinger equation, Black–Scholes equation. . . ).

▶ RMGLS for other manifolds (other thanMk).

Thank you for your attention!
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V. Bonus material
RMGLS



Motivation for the low-rank format/2

Σ

U

V
T

r n

X

n

n = n

r

r r

▶ Storing a dense 5000× 5000 matrix in double precision takes
50002 × 8/220 ≈ 191 MB.
▶ If it has rank 10 and we store only its factors, it takes

(2× 5000× 10+10)× 8/220 = 0.76 kB.

▶ If it has rank 100 and we store only its factors, it takes
(2× 5000× 100+100)× 8/220 = 7.63 MB.

▶ For a matrix stored in the dense format, the storage complexity grows as n2,
but if the matrix is stored in low-rank format, then the storage grows as nr .



Line-search (LS) method

{ How to calculate tk?

▶ Exact line search (LS):
min
t≥0

f (xk + tηk)

▶ tEXk is the unique minimizer if f is strictly convex.

▶ Can sometimes be computed. Good for theory.

▶ In practice, for generic f , we do not use exact LS. Replace exact LS with
something computationally cheaper, but still effective.

{ Armijo line-search (also known as Armijo backtracking, Armijo
condition, sufficient decrease condition, . . . ).

Armijo line-search technique: [Armijo 1966]

https://msp.org/pjm/1966/16-1/pjm-v16-n1-p01-p.pdf


Steepest descent on a manifold
▶ Steepest descent in R

n is based on the update
formula

xk+1 = xk + tkηk ,

where tk ∈R is the step size and ηk ∈Rn is
the search direction.

{ On nonlinear manifolds:

▶ ηk will be a tangent vector toM at xk , i.e., ηk ∈ TxkM.

Remark: If ηk = −gradf (xk), we get the Riemannian steepest descent.

▶ Search along a curve inM whose tangent vector at tk = 0 is ηk .

{ Retraction.
TxkM

M

tkηk
xk

xk+1 = Rxk (tkηk)



Steepest descent on a manifold (reprise)

Steepest descent on manifolds is based on the update formula

xk+1 = Rxk (tkηk),

where tk ∈R and ηk ∈ TxkM.

Recipe for constructing the steepest descent method on a manifold:

▶ Choose a retraction R (previous slide).

▶ Select a search direction ηk (the anti-gradient ηk = −gradf (xk)).
▶ Select a step length tk (with a line-search technique).

TxkM

M

tkηk
xk

xk+1 = Rxk (tkηk)



Retractions on embedded submanifolds

LetM be an embedded submanifold of a vector space E . Thus TxM is a linear
subspace of TxE ≃ E . Since x ∈M⊆ E and ξ ∈ TxM⊆ TxE ≃ E , with little abuse
of notation we write x+ ξ ∈ E .
{ General recipe to define a retraction Rx(ξ) for embedded submanifolds:

▶ Move along ξ to get to x+ ξ in E .
▶ Map x+ ξ back toM. For matrix manifolds, use matrix decompositions.

Example. LetM = Sn−1, then the
retraction at x ∈ Sn−1 is

Rx(ξ) =
x+ ξ
∥x+ ξ∥ ,

defined for all ξ ∈ TxSn−1. Rx(ξ) is
the point on Sn−1 that minimizes the
distance to x+ ξ .

y = Rx(ξ)

TxS2

S2

ξx



One RMGLS iteration starting at x(i)h to minimize fh.
(1) Pre-smoothing: x̄h = SMOOTHν1(x(i)h , fh)
(2) Coarse-grid correction:

(a) Restrict to the coarse manifold: x(i)H = IHh (x̄h)
(b) Compute the linear correction term:

κH = gradfH (x
(i)
H )− ĨHh (gradfh(x̄h))

(c) Define the coarse-grid objective function
ψH (xH ) = fH (xH )− g

x
(i)
H
(R−1
x
(i)
H

(xH ),κH )

(d) Compute an approximate minimizer x(i+1)H starting at x(i)H to
minimize ψH using either
▶ a Riemannian trust-region method (ifMH is small)
▶ one recursive RMGLS iteration (otherwise)

(e) Compute the coarse-grid correction: ηH = R−1
x
(i)
H

(x
(i+1)
H )

(f) Interpolate to the fine manifold: ηh = ĨhH (ηH )
(g) Compute the corrected approximation on the fine manifold:

x̂h = Rx̄h (α
∗ηh) with α∗ obtained from line search

(3) Post-smoothing: x(i+1)h = SMOOTHν2(x̂h, fh)



Smoothers

▶ Many options for smoothers, but they need to be compatible with
optimization, like SD or L-BFGS.

▶ Point smoother, but also line smoothers are possible using cheap
preconditioning or quasi-Newton.

▶ We take half the step size in steepest descent. Similar to Jacobi iteration as
smoother, i.e., we do line search, get α and then set α← α/2.

▶ For isotropic problems, a small number (5) of steepest descent steps for
Riemannian manifolds suffices. Steepest descent plays the role of a smoother.

[Wen/Goldfarb 2009, Vandereycken 2010]



“LYAP” variational problem

Rank 5 Rank 10

Prec. size 10 11 12 13 14 15 10 11 12 13 14 15

No
nouter 51 54 61 59 162 92 300 103 61 63 62 59∑
ninner 4561 9431 21066 36556 30069 30096 27867 30025 33818 45760 44467 38392

maxninner 1801 3191 7055 9404 1194 1851 2974 3385 8894 24367 24537 25013

Yes
nouter 41 45 50 52 56 60 44 64 62 53 56 56∑
ninner 44 45 50 52 56 60 69 104 82 60 69 56

maxninner 4 1 1 1 1 1 9 9 8 8 8 1

▶ Stopping criterion: maximum number of outer iterations nmax outer = 300.
The inner solver is stopped when

∑
ninner first exceeds 30000.

▶ Impressive reduction in the number of iterations of the inner solver.

▶ nouter and
∑
ninner depend (quite mildly) on size, while maxninner is

basically constant.



An example of factorized gradient
▶ “LYAP” functional: F (w(x,y)) =

∫
Ω

1
2∥∇w(x,y)∥2 −γ(x,y)w(x,y)dxdy.

▶ The gradient of F is the variational derivative δF
δw = −∆w −γ .

▶ The discretized Euclidean gradient in matrix form is given by

G = AW +WA− Γ .
with A is the second-order periodic finite difference differentiation matrix.

▶ The first-order optimality condition G = AW +WA− Γ = 0 is a Lyapunov
(or Sylvester) equation.

{ Factorized Euclidean gradient:

G =
[
AU U Uγ

]
blkdiag

(
Σ, Σ, Σγ

) [
V AV Vγ

]⊤
.

AU







U Uγ

][











Vγ







V AV

T



Lyapunov – importance of line search
▶ Compare LS: standard Wolfe vs Hager-Zhang (developed for nonlinear CG in

R
n but can be extended to general manifolds likeMk).

▶ The relative error in Frobenius norm of the low-rank approximation:

err-W (i)B ∥W (i)
h −W

(∗)
h ∥F/∥W

(∗)
h ∥F.

Hager–Zhang weak Wolfe



Lyapunov – smoothness of the error

Example: V-cycle, finest level = 8 (about 250000 gridpoints), coarsest level = 5,
rank = 5, number of smoothing steps = 5.

E
(i)
h B |W

(i)
h −W

(∗)
h |.



Nonlinear PDE – smoothness of the error

Example: V-cycle, finest level = 8 (about 250000 gridpoints), coarsest level = 5,
rank = 5, number of smoothing steps = 5.

E
(i)
h B |W

(i)
h −W

(∗)
h |.



VI. Bonus material
Riemannian Hager–Zhang line search



A motivating example: Quadratic cost function

Figure: Convergence behavior of line search with weak Wolfe (WW) or Hager–Zhang (HZ)
when applied to a quadratic function f . The objective function is denoted by fk and the
gradient by gk . The horizontal dashed lines indicate √εmach and εmach.



HZLS/I
▶ Line searches usually have

sufficient decrease as stopping
criteria (Wolfe, Armijo).

▶ In finite precision, this condition
cannot be satisfied close to the local
minimum.

▶ One can only expect the minimum
to be determined within √εmach.

6.7e –16

1+2.5e –81– 2.5e –8 1.0

▶ Use approximate Wolfe conditions instead, based on the derivative of the
objective function. Accurate within εmach.

▶ Reason: Finding the zero of the derivative f ′ of an approximate quadratic f
is numerically more accurate than minimizing f .

▶ In principle: simply use MATLAB’s fzero on f ′ but this is too expensive
for local optimization methods.

[Hager/Zhang 2005–2006]



HZLS/II
▶ (weak) Wolfe conditions in terms

of φ(α)B f (xk +αdk)

φ(αk)−φ(0) ⩽ αk δφ′(0),
φ′(αk) ⩾ σ φ′(0),

0 < δ ⩽ σ < 1.

▶ Around a local minimum, the 1st
condition is difficult to satisfy since
φ(α) ≈ φ(0).

α

φ(α)

δ φ′(0)φ(0)

αk0

φ(αk)

φ′(αk)

▶ Approximate Wolfe conditions

(2δ−1)ϕ′(0) ⩾⩾⩾ ϕ′(αk) ⩾ σ φ
′(0), 0 < δ < 0.5, δ ⩽ σ < 1.

▶ Only the 1st inequality is an approximation of the original conditions, so it
would be more appropriate to talk about approximate Armijo.



HZLS/III

▶ Why approximate?

▶ Build a special quadratic interpolant q(α) of φ(α) such that the finite
difference (FD) quotient in the 1st Wolfe condition can be approximated by

φ(αk)−φ(0)
αk

≈ q(αk)− q(0)
αk

=
φ′(αk)+φ′(0)

2
.

▶ This gives the inequality

(2δ−1)ϕ′(0) ⩾⩾⩾ ϕ′(αk).

▶ With this approximation we circumvent the numerical errors inherent in the
original FD quotient.

▶ HZLS can be generalized to the Riemannian framework using the
derivative of the retraction R′X . Seems restrictive but, in practice, it is not:
automatic differentiation and we are allowed to change retraction.



Rayleigh quotient on the sphere

Figure: Convergence behavior of steepest descent with standard Armijo (SA) or
Hager–Zhang (HZ) line search when applied to the Rayleigh quotient on the sphere. The
gradient is denoted by gk . The horizontal dashed lines indicate √εmach and εmach.



Brockett cost function on the Stiefel manifold

Figure: Convergence behavior of steepest descent with standard Armijo (SA) or
Hager–Zhang (HZ) line search when applied to the Brockett cost function on the Stiefel
manifold. The gradient is denoted by gk . The horizontal dashed lines indicate √εmach and
εmach.


