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Shooting method for computing geodesics on Stiefel/1

Paper: A single shooting method with approximate Fréchet derivative for
computing geodesics on the Stiefel manifold, M. Sutti, Electron. Trans. Numer.
Anal. (ETNA), Vol. 60, 501–519, September 2024.

▶ Many applications in diverse fields
deal with data belonging to the
Stiefel manifold

St(n,p) = {X ∈Rn×p : X⊤X = Ip}.

TXSt(n,p)

St(n,p)

Z

X

▶ Evaluation of the distance between two points on St(n,p).

▶ No closed-form solution is known for St(n,p) !
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Shooting method for computing geodesics on Stiefel/2

This talk:

I. Motivating examples: shape analysis and interpolation on manifolds.

II. Geometry of the Stiefel manifold.

III. Computational framework based on the classical shooting method for BVPs,
with an approximate formula for the Fréchet derivative of the geodesic
involved.

IV. Numerical experiments show that the algorithm is competitive with other
state-of-the-art methods.
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I. Motivation



A motivating example: imaging/1
▶ Need to deal with transformations that are more complicated than similarity

transformations (translation/rotation/scaling).

▶ E.g., distortion, or imaging the same scene from different viewing angles.

▶ Example: two shapes from the MPEG-7 dataset, with a certain degree of
similarity.

{ How “far” are they from each other?

MPEG-7: [Bober 2001], affine-standardized shapes: [Bryner 2017]
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A motivating example: imaging/2

▶ One usually goes beyond the similarity group to define shape equivalences.

▶ Geodesics on St(n,2), with shapes from the MPEG-7 dataset.
dist.

0.28

1.23

0.55

0.78

0.21

MPEG-7: [Bober 2001], affine-standardized shapes: [Bryner 2017]
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A motivating example: interpolation on manifolds

▶ Model order reduction (MOR) for dynamical systems parametrized according
to p = [p1, . . . ,pd]

⊤.

▶ Suppose we have a set of local orthonormal basis matrices {V1,V2, . . . ,VK }.
▶ Given a new parameter value p̂, a basis V̂ can be obtained by interpolating

the local basis matrices on a tangent space to St(n,r).

▶ For interpolation on TV3
St(n,r), the distance is needed.

St(n,r)

TV3
St(n,r)

V3

V2

Γ2 = LogV3
(V2)

V1

Γ1 = LogV3
(V1)

V4

Γ4 = LogV3
(V4)Γ̂

ExpV3

(
Γ̂
)
= V̂

MOR, POD: [Benner/Gugercin/Willcox 2015]
Interpolation on manifolds: [Hüper/Silva Leite 2007, Amsallem 2010, Amsallem/Farhat 2011]
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II. The Stiefel manifold



The Stiefel manifold and its tangent space
▶ Set of matrices with orthonormal

columns:

St(n,p) = {X ∈Rn×p : X⊤X = Ip}.

TXSt(n,p)

St(n,p)

Z

X

▶ Tangent space toM at x: set of all tangent vectors toM at x, denoted TxM.
For St(n,p),

TXSt(n,p) = {ξ ∈Rn×p : X⊤ξ + ξ⊤X = 0}.

▶ Alternative characterization of TXSt(n,p):

TXSt(n,p) = {XΩ +X⊥K : Ω = −Ω⊤, K ∈R(n−p)×p},

where span(X⊥) =
(
span(X)

)⊥
. An orthogonal completion of X ∈Rn×p is

X⊥ ∈Rn×(n−p) s.t. [X X⊥] ∈O(n).

▶ The projection onto the tangent space TXSt(n,p) is

PX ξ = Xskew(X⊤ξ) + (I −XX⊤)ξ.

Stiefel manifold: [Stiefel, 1935]
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Riemannian manifold

A manifoldM endowed with a smoothly-varying inner product (called
Riemannian metric g) is called Riemannian manifold.

{ A couple (M, g), i.e., a manifold with a Riemannian metric on it.

{ For the Stiefel manifold:

▶ Embedded metric inherited by TXSt(n,p) from the embedding space Rn×p

⟨ξ,η⟩ = Tr(ξ⊤η), ξ, η ∈ TXSt(n,p).

▶ Canonical metric by seeing St(n,p) as a quotient of the orthogonal group
O(n): St(n,p) = O(n)/O(n− p)

⟨ξ,η⟩c = Tr(ξ⊤(I − 1
2XX⊤)η), ξ, η ∈ TXSt(n,p).
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Metrics and geodesics on St(n,p)

Embedded metric:

⟨ξ,η⟩ = Tr(ξ⊤η).

Canonical metric:

⟨ξ,η⟩c = Tr(ξ⊤(I − 1
2XX⊤)η).

Length of a tangent vector ξ = XΩ +X⊥K :

∥ξ∥F =
√
⟨ξ,ξ⟩ =

√
∥Ω∥2F + ∥K∥

2
F. ∥ξ∥c =

√
⟨ξ,ξ⟩c =

√
1
2∥Ω∥

2
F + ∥K∥

2
F.

▶ Closed-form solution (with the canonical
metric) for a geodesic Z(t) that realizes ξ
with base point X:

Z(t) =Q expm(A(ξ)t) In,p,

where QB [X X⊥], A(ξ)B
[
X⊤ξ −(X⊤⊥ξ)⊤

X⊤⊥ξ O

]
,

and In,p B [ Ip Op×(n−p)]
⊤.

TXSt(n,p)

St(n,p)

ξ

X

Y

Z(t)
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Riemannian exponential and logarithm

▶ Given x ∈M and ξ ∈ TxM, the exponential mapping Expx : TxM→M s.t.
Expx(ξ)B γ(1), with γ being the geodesic with γ(0) = x, .γ(0) = ξ .

▶ Corollary: Expx(tξ)B γ(t), for t ∈ [0,1].
▶ ∀x, y ∈M, the mapping Exp−1x (y) ∈ TxM is called logarithm mapping.

Example. LetM = Sn−1, then the
exponential mapping at x ∈ Sn−1 is

y = Expx(ξ) = xcos(∥ξ∥) + ξ
∥ξ∥

sin(∥ξ∥),

and the Riemannian logarithm is

Logx(y) = ξ = arccos(x⊤y)
Px y
∥Px y∥

,

where y ≡ γ(1) and Px is the projector
onto

(
span(x)

)⊥
, i.e., Px = I − xx⊤.

γ(t)

y = Expx(ξ)

TxS2

S2

ξx
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Riemannian distance on St(n,p)

▶ Property: Given X, Y ∈ St(n,p), s.t. ExpX(ξ) = Y , the Riemannian distance
d(X,Y ) equals the length of ξ ≡

.
Z(0) ∈ TXSt(n,p):

d(X,Y ) = ∥ξ∥c =
√
⟨ξ,ξ⟩c.

TXSt(n,p)

St(n,p)

ξ

X

Y

Z(t)

Equivalent to: Compute the length of
the Riemannian logarithm of Y with
base point X, i.e.,

LogX(Y ) = ξ.

▶ No closed-form solution is known for St(n,p) !

{ How do we compute d(X,Y ) in practice / numerically?
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III. The shooting method



Single shooting for BVPs
▶ Boundary value problem (BVP): Find w(x) : [a,b]→R that satisfies

w′′ = f (x,w,w′), with BCs


w(a) = α,

w(b) = β.

▶ Recast it as an initial value problem (IVP): Find w(x) that satisfies

w′′ = f (x,w,w′), with ICs


w(a) = α,

w′(a) = s.

{ In general, this has a unique solution w(x) ≡ w(x;s) which depends on s
(Picard–Lindelöf theorem). Analytical or numerical solution (e.g., Runge–Kutta).

{ Single shooting method for BVPs:

▶ Define F(s) = w(b;s)− β.
▶ Find s̄ s.t. F(s̄) = 0. Usually, with Newton’s method.

BVPs and shooting methods: see, e.g., [Stoer/Bulirsch 1991]
15 / 28



Single shooting for BVPs: example
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16 / 28



Single shooting for BVPs: example
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Stiefel geodesics via single shooting

▶ Problem statement:
Find ξ ≡

.
Z(0) ∈ TXSt(n,p)

that satisfies the BVP
..
Z = −

.
Z
.
Z⊤Z −Z((Z⊤

.
Z)2 +

.
Z⊤

.
Z),

with BCs


Z(0) = X,

Z(1) = Y .

TXSt(n,p)

St(n,p)

ξ

X

Y

Z(t)

▶ Recall: we have the explicit solution: Z(t) =Q expm(A(ξ)t) In,p, where

QB [X X⊥], A(ξ)B
[
X⊤ξ −(X⊤⊥ξ)⊤

X⊤⊥ξ O

]
, and In,p B [ Ip Op×(n−p)]⊤.

{ Single shooting for Stiefel geodesics:

▶ Define F(ξ) = Z(t=1,ξ) −Y . {main difference w.r.t. the previous example!

▶ Find ξ̄ s.t. F(ξ̄) = 0 with Newton’s method.
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Linearization and approximation/1

▶ Starting from the nonlinear matrix equation

F(ξ) = Z(t=1,ξ) −Y ,

▶ we linearize it using matrix perturbation theory

F(ξ + δξ) = Z(ξ + δξ)−Y = 0,

where
Z(ξ + δξ) = Z(ξ) +DZ [δξ] + o(∥δξ∥).

▶ Neglecting the higher-order terms in δξ , we get

Z(ξ) +DZ [δξ]−Y = 0,

Z(ξ) +QDexpm(A(ξ))
[
DA(ξ)[δξ]

]
· In,p −Y = 0.

This is equation (4.5) in in the paper [S. 2024].
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Linearization and approximation/2

▶ The perturbation of the matrix exponential by a matrix E ∈Rn×n is

expm(A+E) = expm(A) +Dexpm(A)[E] + o(∥E∥).

▶ Representation for the Fréchet derivative of the matrix exponential

Dexpm(A)[E] = E +
AE +EA

2
+
A2E +AEA+EA2

3!
+ · · · .

▶ Approximation: keep only the first two terms in the expansion, i.e.,

Dexpm(A)[E] ≈ E +
AE +EA

2
.

Function of matrices, Fréchet derivative of the matrix exponential: [Higham 2008]
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Linearization and approximation/3
▶ Identifying E with DA(ξ)[δξ], the formula Dexpm(A)[E] ≈ E + 1

2 (AE +EA)
can be used to approximate Dexpm(A(ξ))

[
DA(ξ)[δξ]

]
in

Z(ξ) +QDexpm(A(ξ))
[
DA(ξ)[δξ]

]
· In,p −Y = 0,

obtaining

Q ·
(
DA(ξ)[δξ] + 1

2 (A ·DA(ξ)[δξ] +DA(ξ)[δξ] ·A)
)
· In,p = Y −Z.

▶ This is now a linear matrix equation to be solved for δξ . In practice, we work
with the factors δΩ and δK of δξ; see Appendix B in [S. 2024].

▶ We obtain a (small-sized) Sylvester equation which can be efficiently solved
with MATLAB’s command lyap to obtain the update δξ .

▶ Then the tangent vector is updated as

ξ(k+1) = ξ(k) +Q ·
[
δΩ(k)

δK (k)

]
.
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Algorithm pseudocode

Algorithm 1: A single shooting method on the Stiefel manifold with an ap-
proximation of the Fréchet derivative (SSAF method).

1 Given X, Y ;
Result: ξ∗ such that ExpX(ξ∗) = Y .

2 Compute the initial guess ξ(0);
3 Set k = 0;
4 while a stopping criterion is met do
5 Compute F(k) = Z(1,ξ(k))−Y ;
6 Solve F(k) +DZ [δξ(k)] = 0 for δξ(k);
7 Update ξ(k+1)← ξ(k) + δξ(k);
8 Project ξ(k+1) onto TXSt(n,p): ξ(k+1)← PX

(
ξ(k+1)

)
;

9 k = k +1;
10 end while

▶ The code was implemented in MATLAB and is freely available on the
repository https://github.com/MarcoSutti/SSAF_2024_repo
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IV. Numerical experiments



Comparisons with other methods/1

Comparisons with existing algorithms:

▶ Bryner’s method (“shooting”, based on discretized parallel transport).

▶ Zimmermann’s method (matrix-algebraic approach, based on the matrix
logarithm).

Table: Comparisons on St(1500,p) with large values of p, for a prescribed d(X,Y ) = 0.5π.
Results are averaged over 10 pairs of randomly generated endpoints on St(1500,p).

p
Avg. comput. time (s) Avg. no. of iterations

Bryner, Zimmermann, SSAF, Bryner, Zimmermann, SSAF,
2017 2017 2024 2017 2017 2024

500 12.09 3.30 1.89 3.00 2.00 4.00
700 31.27 8.21 4.56 3.00 2.00 4.00
1000 77.37 20.39 8.82 3.00 2.00 4.00

Existing algorithms: [Bryner 2017], [Zimmermann 2017]
This is Table 5.2 in the paper [S. 2024].
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Comparisons with other methods/2

Table: Comparisons on St(n,2), for doubling values of n, for a prescribed d(X,Y ) = 0.5π.
T = 20, tolerance τ = 10−3. Results are averaged over 100 experiments.

n
Avg. comput. time (s) Avg. no. of iterations

Bryner, Zimmermann, SSAF, Bryner, Zimmermann, SSAF,
2017 2017 2024 2017 2017 2024

10 0.00400 0.00091 0.00080 4.08 3.73 7.77
20 0.00367 0.00093 0.00091 3.85 3.87 7.35
40 0.00337 0.00095 0.00075 3.49 3.61 6.96
80 0.00312 0.00101 0.00081 3.30 3.61 6.90
160 0.00310 0.00105 0.00086 3.15 3.42 6.86
320 0.00328 0.00107 0.00096 3.02 3.08 6.86
640 0.00371 0.00105 0.00091 3.00 3.02 6.89
1 280 0.00543 0.00104 0.00100 3.00 2.72 6.87
2 560 0.00856 0.00135 0.00121 3.00 2.47 6.87
5 120 0.01056 0.00131 0.00132 3.00 2.34 6.93
10 240 0.01596 0.00144 0.00141 3.00 2.12 6.97

▶ As the ratio p/n→ 0, solving the endpoint geodesic problem requires fewer
iterations. Similar observation in [Nguyen 2022] and [Zimmermann 2017].

This is Table 5.4 in the paper [S. 2024].
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Comparisons with other methods/3

Table: Comparisons on St(500,p), for doubling values of p, for a prescribed
d(X,Y ) = 0.5π. T = 20, tolerance τ = 10−3. Results are averaged over 100 experiments.

p
Avg. comput. time (s) Avg. no. of iterations

Bryner, Zimmermann, SSAF, Bryner, Zimmermann, SSAF,
2017 2017 2024 2017 2017 2024

2 0.00353 0.00103 0.00086 3.01 2.95 6.78
4 0.00533 0.00156 0.00128 3.00 2.81 5.28
8 0.00711 0.00182 0.00115 3.00 2.00 4.08
16 0.01173 0.00369 0.00173 3.00 2.00 4.00
32 0.02912 0.01354 0.00453 3.00 2.00 4.00
64 0.08762 0.03582 0.01150 3.00 2.00 3.00
128 0.40437 0.10052 0.05657 3.00 1.00 3.00
256 1.94025 0.47720 0.25847 3.00 1.00 3.00

This is Table 5.5 in the paper [S. 2024].
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Comparisons with other methods/4
Plots of the data from Tables 5.4 and 5.5.

Figure: Average computation times for Bryner’s shooting method, Zimmermann’s matrix
algebraic algorithm, and our SSAF method on St(n,p).

▶ Bryner did not use the smaller formulation on St(2p,p) when p < n/2, which makes its
algorithm’s complexity O(T np2).

▶ All the other algorithms considered here use the smaller formulation on St(2p,p) when possible,
and hence they are essentially O(p3).

This is Figure 5.1 in the paper [S. 2024].
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Comparisons with other methods/5

Experiment for larger value of n, i.e., n = 1000, and doubling values of p.

Table: Comparisons on St(1000,p), for doubling values of p, for a prescribed
d(X,Y ) = 0.5π. T = 20, tolerance τ = 10−5. Results are averaged over 100 experiments.

p
Avg. comput. time (s) Avg. no. of iterations

Bryner, Zimmermann, SSAF, Bryner, Zimmermann, SSAF,
2017 2017 2024 2017 2017 2024

20 0.03897 0.00641 0.00391 4.00 3.00 5.02
40 0.09512 0.02957 0.01284 3.00 3.00 5.00
80 0.25528 0.08044 0.03969 3.00 2.00 4.00
160 0.76246 0.24119 0.13763 3.00 2.00 4.00
320 3.99810 1.07286 0.64483 3.00 2.00 4.00
640 23.36386 5.62897 2.80133 3.00 2.00 4.00

▶ The numerical results demonstrate the competitiveness of our SSAF method
in terms of both average computation time and number of iterations w.r.t. the
existing algorithms considered here.

This is Table 5.6 in the paper [S. 2024].
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Shooting for computing geodesics on Stiefel - summary

Main contributions:

▶ Computational framework with the classical shooting method for BVPs to
compute the Riemannian distance on the Stiefel manifold.

▶ Computational trick: approximation of the Fréchet derivative of the geodesic.

▶ Competitiveness and efficiency w.r.t. other state-of-the-art algorithms.

Outlook and ongoing work:
▶ Explore the connection between shooting algorithms for computing

geodesics and domain decomposition methods.
▶ Nonlinear Schwarz methods to compute geodesics on manifolds. Joint work

with Tommaso Vanzan.

▶ Target other manifolds that do not have an explicit formula for the distance.
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V. Bonus material



Initial guess
▶ In Newton’s method, selecting a “good enough” initial guess is crucial.

▶ We use a first-order approximation of expm(A) ≈ I +A and solve for ξ .

▶ This yields a first-order approximation ξ̄ to the solution ξ∗ as ξ̄ = Y1 −Y0.
▶ We project ξ̄ onto TY0St(n,p) to obtain a tangent vector:

PY0 ξ̄ = Y0 skew
(
Y⊤0 (Y1 −Y0)

)
+ (In −Y0Y⊤0 )(Y1 −Y0) = Y1 −Y0 sym(Y⊤0 Y1).

▶ To get ξ(0), we rescale PY0 ξ̄ so that its norm is equal to the norm of ξ̄ , i.e.,

ξ(0) =

∥∥∥ξ̄
∥∥∥

∥∥∥PY0 ξ̄
∥∥∥
PY0 ξ̄.

PY0
ξ̄TY0

St(n, p) Y0

St(n, p)
Y1

ξ̄

ξ(0)



Model order reduction/1

▶ Model order reduction (MOR) for dynamical systems parametrized according
to p = [p1, . . . ,pd]

⊤.

▶ For each parameter pi in a set {p1,p2, . . . ,pK }, use proper orthogonal
decomposition (POD) to derive a reduced-order basis Vi ∈ St(n,r), r ≪ n.



.
x(t;p) = A(p)x(t;p) +B(p)u(t),
y(t;p) = C(p)x(t;p),

x(t;p) ∈Rn, u(t) ∈Rm, y(t) ∈Rq,

A(p) ∈Rn×n, B(p) ∈Rn×m, C(p) ∈Rq×n.

reduction



.
xr (t;p) = Ar (p)xr (t;p) +Br (p)u(t),
yr (t;p) = Cr (p)xr (t;p),

xr = V⊤x, Ar = V⊤AV , Br = V⊤B,

Cr = CV , V ≡ V (p) ∈ St(n,r), r ≪ n.

{ This gives a set of local basis matrices {V1,V2, . . . ,VK }.

MOR, POD: [Benner/Gugercin/Willcox 2015]

https://epubs.siam.org/doi/10.1137/130932715


Model order reduction/2

▶ Given a new parameter value p̂, a basis V̂ can be obtained by interpolating
the local basis matrices on a tangent space to St(n,r).

▶ For interpolation on TV3
St(n,r), the distance is needed.

St(n,r)

TV3
St(n,r)

V3

V2

Γ2 = LogV3
(V2)

V1

Γ1 = LogV3
(V1)

V4

Γ4 = LogV3
(V4)Γ̂

ExpV3

(
Γ̂
)
= V̂

Interpolation in the tangent space to a manifold: [Hüper/Silva Leite 2007,
Amsallem 2010, Amsallem/Farhat 2011]

https://link.springer.com/article/10.1007/s10883-007-9027-3
https://stacks.stanford.edu/file/druid:dw083rz0825/amsallem_thesis-augmented.pdf
https://epubs.siam.org/doi/10.1137/100813051


Model order reduction/3

Transient heat equation on a square domain, with 4 disjoint discs.

▶ FEM discretization with n = 1169. Simulation for t ∈ [0,500], with ∆t = 0.1.

▶ 500 snapshot POD over 5000 timeframes, with a reduced model of size r = 4.

▶ Relative error between y(·; p̂) and yr (·; p̂) is about 1%.

Details for these experiments: [S. 2023]

https://arxiv.org/abs/2309.03585


Riemannian center of mass

▶ Notion of mean on a Riemannian manifoldM, defined by the optimization
problem

µ = argmin
p∈M

1
2N

N∑

i=1

d2(p,qi),

where d(p,qi) is the Riemannian distance onM, and qi ∈M, for i = 1, . . . ,N .

▶ For St(n,p), the distances d(p,qi) are computed with our algorithm.

▲! Caveat: On manifolds of positive curvature the Riemannian center of mass is
general not unique. But if the data points are close enough, then uniqueness is
guaranteed.

▶ St(n,p) has also positive curvature (an upper bound on its sectional
curvature is given by 5/4).

Riemannian center of mass: [Cartan 1920s, Calabi 1958, Grove/Karcher 1973]
Uniqueness of the Riemannian center of mass: [Afsari/Tron/Vidal 2013]
Upper bound on the sectional curvature of St(n,p): [Rentmeesters 2013]

https://epubs.siam.org/doi/10.1137/12086282X


Riemannian center of mass of a shape set

▶ “device7” shape set from the MPEG-7 dataset. ▶ Riemannian center of mass:

MPEG-7: [Bober 2001], affine-standardized shapes: [Bryner 2017]

https://epubs.siam.org/doi/10.1137/16M1103099

